Grain boundary characteristics and tensile properties of Ti14 alloy after semi-solid deformation

Yong-nan Chen , Jian-feng Wei , Yong-qing Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 576 -581.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (5) : 576 -581. DOI: 10.1007/s12613-011-0480-3
Article

Grain boundary characteristics and tensile properties of Ti14 alloy after semi-solid deformation

Author information +
History +
PDF

Abstract

The microstructure and room-temperature tensile properties of Ti14, a new α+Ti2Cu alloy, were investigated after conventional forging at 950°C and semi-solid forging at 1000 and 1050°C, respectively. Results show that coarse grains and grain boundaries are obtained in the semi-solid alloys. The coarse grain boundaries are attributed to Ti2Cu phase precipitations occurred on the grain boundaries during the solidification. It is found that more Ti2Cu phase precipitates on the grain boundaries at a higher semi-solid forging temperature, which forms precipitated zones and coarsens the grain boundaries. Tensile tests exhibit high strength and low ductility for the semi-solid forged alloys, especially after forging at 1000°C. Fracture analysis reveals the evidence of ductile failure mechanisms for the conventional forged alloy and cleavage fracture mechanisms for the alloy after semi-solid forging at 1050°C.

Keywords

titanium alloys / semi-solid forging / grain boundaries / tensile properties / fracture

Cite this article

Download citation ▾
Yong-nan Chen, Jian-feng Wei, Yong-qing Zhao. Grain boundary characteristics and tensile properties of Ti14 alloy after semi-solid deformation. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5): 576-581 DOI:10.1007/s12613-011-0480-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Donachie M.J. Titanium: a Technical Guide, 2000 Materials Park, Michigan, ASM International, 22.

[2]

Lutjering G., Williams J.C. Titanium, 2003 Berlin, Springer, 178.

[3]

Ho W.F. A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys. J. Alloys Compd., 2008, 464, 580.

[4]

Eskin D.G., Suytino Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci., 2004, 49, 629.

[5]

Colley L.J., Wells M.A., Maijer D.M. Tensile properties of as-cast aluminum alloy AA5182 close to the solidus temperature. Mater. Sci. Eng. A, 2004, 386, 140.

[6]

Phillion A.B., Thompson S., Cockcroft S.L., et al. Tensile properties of as-cast aluminum alloys AA3104, AA6111 and CA31218 at above solidus temperatures. Mater. Sci. Eng. A, 2008, 497, 388.

[7]

Tzimas E., Zavaliangos A. Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content. Acta Mater., 1999, 47, 517.

[8]

Lewandowski M.S., Overfelt R.A. High temperature deformation behavior of solid and semi-solid alloy 718. Acta Mater., 1999, 47, 4695.

[9]

Hu K., Phillion A.B., Maijer D.M., et al. Constitutive behavior of as-cast magnesium alloy Mg-Al3-Zn1 in the semi-solid state. Scripta Mater., 2009, 60, 427.

[10]

Ramadan M., Takita M., Nomura H. Effect of semi-solid processing on solidification microstructure and mechanical properties of gray cast iron. Mater. Sci. Eng. A, 2006, 417, 166.

[11]

Püttgen W., Hallstedt B., Bleck W., et al. On the microstructure and properties of 100Cr6 steel processed in the semi-solid state. Acta Mater., 2007, 55, 6553.

[12]

Püttgen W., Hallstedt B., Bleck W., et al. On the microstructure formation in chromium steels rapidly cooled from the semi-solid state. Acta. Mater., 2007, 55, 1033.

[13]

Zhao Y.Q., Wu W.L., Ma X.D., et al. Semi-solid oxidation and deformation behavior of Ti14 alloy. Mater. Sci. Eng. A, 2004, 373, 315.

[14]

Zhao Y.Q., Wu W.L., Chang H. Research on microstructure and mechanical properties of a new α+Ti2Cu alloy after semi-solid deformation. Mater. Sci. Eng. A, 2006, 416, 181.

[15]

Y.Q. Zhao, K.Y. Zhu, and Y. Li, A Low Cost Ti Alloy, Chinese Patent, Appl.02101189.3, 1997.

[16]

Y.Q. Zhao, K.Y. Zhu, and Y. Li, A Low Cost Near β-Ti Alloy, Chinese Patent, Appl.02101190.7, 1997.

[17]

Zhao Y.Q., Liu J.L., Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys. Rare Met. Mater. Eng., 2005, 34, 531.

[18]

Zhao Y.Q., Zhao X.M., Zhu K.Y. Burn resistant characteristics and microstructures of Ti-Cu-Al alloys. Rare Met. Mater. Eng., 1998, 27, 362.

[19]

Chino Y., Kobata M., Iwasaki H., et al. An investigation of compressive deformation behaviour for AZ91 Mg alloy containing a small volume of liquid. Acta Mater., 2003, 51, 3309.

[20]

Xu X.J., Lin J.P., Wang Y.L., et al. Microstructure and tensile properties of as-cast Ti-45Al-(8–9)Nb-(W, B, Y) alloy. J. Alloys Compd., 2006, 414, 131.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/