Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration

Ye-ming Fan , Hong Guo , Jun Xu , Ke Chu , Xue-xin Zhu , Cheng-chang Jia

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (4) : 472 -478.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (4) : 472 -478. DOI: 10.1007/s12613-011-0465-2
Article

Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration

Author information +
History +
PDF

Abstract

Diamond reinforced copper (Cu/diamond) composites were prepared by pressure infiltration for their application in thermal management where both high thermal conductivity and low coefficient of thermal expansion (CTE) are important. They were characterized by the microstructure and thermal properties as a function of boron content, which is used for matrix-alloying to increase the interfacial bonding between the diamond and copper. The obtained composites show high thermal conductivity (>660 W/(m·K)) and low CET (<7.4×10−6 K−1) due to the formation of the B13C2 layer at the diamond-copper interface, which greatly strengthens the interfacial bonding. Thermal property measurements indicate that in the Cu-B/diamond composites, the thermal conductivity and the CTE show a different variation trend as a function of boron content, which is attributed to the thickness and distribution of the interfacial carbide layer. The CTE behavior of the present composites can be well described by Kerner’s model, especially for the composites with 0.5wt% B.

Keywords

composite materials / pressure infiltration / thermal conductivity / coefficient of thermal expansion

Cite this article

Download citation ▾
Ye-ming Fan, Hong Guo, Jun Xu, Ke Chu, Xue-xin Zhu, Cheng-chang Jia. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(4): 472-478 DOI:10.1007/s12613-011-0465-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zweben C. Advanced materials for optoelectronic packaging. Semicond. Int., 2002, 25(10): S5.

[2]

Xue C., Yu J.K., Zhu X.M. Thermal properties of diamond/ SiC/Al composites with high volume fractions. Mater. Des., 2011, 32(8–9): 4225.

[3]

Chu K., Wu Q.Y., Jia C.C., et al. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol., 2010, 70(2): 298.

[4]

Chu K., Jia C.C., Tian W.H., et al. Thermal conductivity of spark plasma sintered consolidated SiCp/Al composites containing pores: Numerical study and experimental validation. Compos. Part A, 2010, 41(1): 161.

[5]

Chu K., Jia C.C., Liang X.B., et al. Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater., 2010, 17(2): 234.

[6]

Chu K., Jia C.C., Liang X.B., et al. Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Rare Met., 2009, 28(6): 646.

[7]

Yoshida K., Morigami H. Thermal properties of diamond/ copper composite material. Microelectron. Reliab., 2004, 44(2): 303.

[8]

Kleiner S., Khalid F.A., Ruch P.W., et al. Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium. Scripta Mater., 2006, 55(4): 291.

[9]

Ekimov E.A., Suetin N.V., Popovich A.F., et al. Thermal conductivity of diamond composites sintered under high pressures. Diamond Relat. Mater., 2008, 17(4–5): 838.

[10]

Weber L., Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X(X=Cr, B) diamond composites. Scripta Mater., 2007, 57(11): 988.

[11]

Chu K., Liu Z.F., Jia C.C., et al. Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles. J. Alloys Compd., 2010, 490(1–2): 453.

[12]

Schubert T., Ciupiński L., Zieliński W., et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for sink applications. Scripta Mater., 2008, 58(4): 263.

[13]

Hasselman D.P.H., Johnson L.F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater., 1987, 21(6): 508.

[14]

Schubert T., Trindade B., Weißgärber T., et al. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater. Sci. Eng. A, 2008, 475(1–2): 39.

[15]

Turner P.S. Thermal-expansion stresses in reinforced plastics. J. Res. Natl. Bur. Stand., 1946, 37(4): 239.

[16]

Kerner E.H. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. London Sect. B, 1956, 69, 808.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/