High heat loading performance of actively cooled W/Cu FGM-based components

Zhang-jian Zhou , Jun Tan , Dan-dan Qu , Hua Li , Young-jin Yum , Hyun-woo Lim

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (4) : 467 -471.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (4) : 467 -471. DOI: 10.1007/s12613-011-0464-3
Article

High heat loading performance of actively cooled W/Cu FGM-based components

Author information +
History +
PDF

Abstract

A functionally graded material-based actively water-cooled tungsten-copper mockup with a dimension of 30 mm×30 mm×25 mm was designed and fabricated by infiltration-brazing method. The thicknesses of the pure W layer and W/Cu graded layer were 2 and 3 mm, respectively. High heat flux tests were performed on the mockup using an e-beam device. There is no damage occurring on the joint after heat loading at 5 MW/m2. The temperature on the pure W surface is less than 500°C after irradiation for 100 s at 5 MW/m2, while the temperature on the brazing seam/copper surface is around 200°C.

Keywords

tungsten / copper / functionally graded materials / thermal load

Cite this article

Download citation ▾
Zhang-jian Zhou, Jun Tan, Dan-dan Qu, Hua Li, Young-jin Yum, Hyun-woo Lim. High heat loading performance of actively cooled W/Cu FGM-based components. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(4): 467-471 DOI:10.1007/s12613-011-0464-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bolt H., Barabash V., Krauss W., et al. Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater., 2004, 329–333, 66.

[2]

Kaufmann M., Neu R. Tungsten as first wall material in fusion devices. Fusion Eng. Des., 2007, 82, 521.

[3]

Roedig M., Kuehnlein W., Linke J., et al. Investigation of tungsten alloys as plasma facing materials for the ITER divertor. Fusion Eng. Des., 2002, 61–62, 135.

[4]

Neu R., Bobkov V., Dux R., et al. Final steps to an all tungsten divertor tokamak. J. Nucl. Mater., 2007, 363–365, 52.

[5]

Smid I., Akiba M., Vieider G., Plächl L. Development of tungsten armor and bonding to copper for plasma-interactive components. J. Nucl. Mater., 1998, 258–263, 160.

[6]

Merola M., Akiba M., Barabash V., Mazul I. Overview on fabrication and joining of plasma facing and high heat flux materials for ITER. J. Nucl. Mater., 2002, 307–311, 1524.

[7]

Barabash V., Akiba M., Cardella A., et al. Armor and heat sink materials joining technologies development for ITER plasma facing components. J. Nucl. Mater., 2000, 283–287, 1248.

[8]

Linke J. High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors. Fusion Sci. Technol., 2008, 53, 278.

[9]

Hirai T., Ezato K., Majerus P. ITER relevant high heat flux testing on plasma facing surfaces. Mater. Trans., 2005, 46, 412.

[10]

Itoh Y., Takahashi M., Takano H. Design of tungsten/copper graded composite for high heat flux components. Fusion Eng. Des., 1996, 31, 279.

[11]

Pintsuk G., Smid I., Döring J.-E., et al. Fabrication and characterization of vacuum plasma sprayed W/Cu-composites for extreme thermal conditions. J. Mater. Sci., 2007, 42, 30.

[12]

Gasik M.M., Ueda S. Micromechanical modeling of functionally graded W/Cu materials for divertor plate components in a fusion reactor. Mater. Sci. Forum, 1999, 308–311, 603.

[13]

Kieback B., Neubrand A., Riedel H. Processing techniques for functionally graded materials. Mater. Sci. Eng. A, 2003, 362, 81.

[14]

Zhou Z.J., Ge C.C. Fabricating of metal/metal functionally graded materials with a high melting point difference. J. Univ. Sci. Technol. Beijing, 2005, 12, 427.

[15]

Jedamzik R., Neubrand A., Rödel J. Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites. J. Mater. Sci., 2000, 35, 477.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/