Electrochemical behavior of different shelled microcapsule composite copper coatings

Xiu-qing Xu , Yan-hong Guo , Wei-ping Li , Li-qun Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (3) : 377 -384.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (3) : 377 -384. DOI: 10.1007/s12613-011-0450-9
Article

Electrochemical behavior of different shelled microcapsule composite copper coatings

Author information +
History +
PDF

Abstract

Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics.

Keywords

composite coatings / shell materials / copper / microcapsules / electrochemical properties / corrosion resistance / electrodeposition

Cite this article

Download citation ▾
Xiu-qing Xu, Yan-hong Guo, Wei-ping Li, Li-qun Zhu. Electrochemical behavior of different shelled microcapsule composite copper coatings. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(3): 377-384 DOI:10.1007/s12613-011-0450-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo H.T., Zhang S.Y. Composite Electroplating Technology, 2007 Beijing, Chemical Industry Press, 8.

[2]

Zhu L.Q. Electrodeposition Theory and Technology of Functional Layer, 2005 Beijing, Beihang University Press, 164.

[3]

Wan J.G., Li S.H. Preparation and characteristics of electroless Ni-P-nano-SiC composite plating. Sci. Technol. Eng., 2008, 8(16): 4742.

[4]

Zhu L.Q., Gu J., Li W.P., Liu H.C. Microwave absorption properties of copper coated composites. Acta Mater. Compos. Sin., 2008, 25(3): 121.

[5]

Jugović B., Stevanović J., Maksimović M. Electrochemically deposited Ni+WC composite coatings obtained under constant and pulsating current regimes. J. Appl. Electrochem., 2004, 34, 175.

[6]

Gyftou P., Stoumbouli M., Pavlatou E.A., Asimidis P., Spyrellis N. Tribological study of Ni matrix composite coatings containing nano and micro SiC particles. Electrochim. Acta, 2005, 50(23): 4544.

[7]

Muller C., Sarret M., Benballa M. ZnNi/SiC composites obtained from an alkaline bath. Surf. Coat. Technol., 2003, 162(1): 49.

[8]

Yuan X.T., Sun D.B., Yu H.Y., Wang Y. Effect of nano-SiC particles on the corrosion resistance of NiP-SiC composite coatings. Int. J. Miner. Metall. Mater., 2009, 16(4): 444.

[9]

Alexandridou S., Kiparissides C., Fransaer J., Celis J.P. On the synthesis of oil-containing microcapsules and their electrolytic codeposition. Surf. Coat. Technol., 1995, 71(3): 267.

[10]

Alexandridou S., Kiparissides C., Mange F., Foissy A. Surface characterization of oil-containing polyterephthalamide microcapsules prepared by interfacial polymerization. J. Microencapsulation, 2001, 18(6): 767.

[11]

Zhu L.Q., Guo Y.H., Li W.P., Liu H.C. Study on liquid microcapsules for electrolytic co-deposition. J. Funct. Mater., 2008, 39(9): 1507.

[12]

Zheng T.L., Zhu L.Q., Zhang W. Corrosion resistance performance of liquid-containing microcapsule composite nickel and copper coating. Acta Aeronaut. Astronaut. Sin., 2006, 27(1): 147.

[13]

Zhu L.Q., Zhang W., Liu F., et al. Electrodeposition of composite copper/liquid-containing microcapsule coatings. J. Mater. Sci., 2004, 39(2): 495.

[14]

Zhu L.Q., Zhang W. The codeposition mechanism and function of oil-containing microcapsule composite copper coating. Acta Phys. Chim. Sin., 2004, 20(8): 795.

[15]

Zhu L.Q. Ghosh S.K. Electrolytic co-deposition of polymer-encapsulated (microencapsulated) particles. Functional Coatings by Polymer Microencapsulation, 2006 Berlin, WILEY-VCH, 297.

[16]

Wang B.Q., Li Z.H., Du F.P., Duan L.S. Research of slow release/controlled release technology on fertilizers and pesticides. Appl. Chem. Ind., 2005, 34(9): 519.

[17]

Song J., Chen L., Li X.J. Microencapsule Technology and Application, 2004 Beijing, Chemical Industry Press, 23.

[18]

Zhu L.Q., Liu F., Zhang W. Study of electrodepositing composite nickel inclusion lubricant microcapsule. J. Funct. Mater., 2004, 35(4): 504.

[19]

Yan Y.X., Shen L.P. Theoretical etical research and analysis of affecting factors on sustained-release properties for microcapsules. Beijing Text. J., 2002, 23(4): 47.

[20]

Lu N., Wan X.C. The research progress about the release course of core material in micro-capsule. Sci. Technol. Cereals Oils Foods, 2001, 9(4): 22.

[21]

Liang Z.Q. Technology and Application of Microcapsules, 1999 Beijing, Light Industry Press, 384.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/