Doping effect on thermoelectric properties of nonstoichiometric AgSbTe2 compounds

Sheng-nan Zhang , Guang-yu Jiang , Tie-jun Zhu , Xin-bing Zhao , Sheng-hui Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (3) : 352 -356.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (3) : 352 -356. DOI: 10.1007/s12613-011-0446-5
Article

Doping effect on thermoelectric properties of nonstoichiometric AgSbTe2 compounds

Author information +
History +
PDF

Abstract

Nonstoichiometric ternary thermoelectric materials Ag0.84Sb1.15M0.01Te2.16 (M=Ce, Yb, Cu) were prepared by a direct melt-quench and hot press process. The carrier concentration of all the samples increased after doping. Thermoelectric properties, namely electrical conductivity, Seebeck coefficient, and thermal conductivity, were measured from 300 to 673 K. The phase transition occurring at about 418 K representing the phase transition from β-Ag2Te to α-Ag2Te influenced the electrical transport properties. The electrical conductivities of Ce and Yb doped samples increased after doping from 1.9×104 to 2.5×104 and 2.3×104 S·m−1, respectively, at 673 K. Also, at room temperature, the Seebeck coefficient of the Ce doped sample relatively increased corresponding to the high carrier concentration due to the changes in the band structure. However, all the thermal conductivities increased after doping at low temperature. Because of the higher thermal conductivity, the dimensionless figure of merit ZT of these doped samples has not been improved.

Keywords

thermoelectric materials / rare earth elements / doping / silver antimony telluride

Cite this article

Download citation ▾
Sheng-nan Zhang, Guang-yu Jiang, Tie-jun Zhu, Xin-bing Zhao, Sheng-hui Yang. Doping effect on thermoelectric properties of nonstoichiometric AgSbTe2 compounds. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(3): 352-356 DOI:10.1007/s12613-011-0446-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rowe D.M. CRC Handbook of Thermoelectrics, 1995 Boca Raton, CRC Press, 1.

[2]

Tritt T.M. Thermoelectric materials: holey and unholey semiconductors. Science, 1999, 283, 804.

[3]

Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297, 2229.

[4]

Arachchige I.U., Wu J.S., Dravid V.P., Kanatzidis M.G. Nanocrystals of the quaternary thermoelectric materials AgPbmSbTe m+2 (m=1–18) phase segregated or solid solutions. Adv. Mater., 2008, 20, 3638.

[5]

Wu L.J., Zheng J.C., Zhou J., Li Q., Yang J.H., Zhu Y.M. Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal. J. Appl. Phys., 2009, 105, 094317.

[6]

Gueguen A., Poudeu P.F.P., Li C.P., Moses S., Uher C., Dravid J. H. V., Paraskevopoulos K.M., Kanatzidis M.G. Thermoelectric properties and nanostructuring in the p-type materials NaPb18−xSnxMTe (M=Sb, Bi). Chem. Mater., 2009, 21, 1683.

[7]

Yang S.H., Zhu T.J., Sun T., Zhang S.N., Zhao X.B., He J. Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials. Nanotechnology, 2008, 19, 245707.

[8]

Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Uher C., Hogan T., Polychroniadis E.K., Kanatzidis M.G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303, 818.

[9]

Skrabek E.A., Trimmer D.S. Rowe D.M. Properties of the general TAGS system. CRC Handbook of Thermoelectrics, 1995 Boca Raton, CRC Press, 267.

[10]

Matsushita H., Hagiwara E., Katsui A. Phase diagram and thermoelectric properties of Ag3−xSb1+xTe4 system. J. Mater. Sci., 2004, 39, 6299.

[11]

Maier R.G. Zur kenntnis des systems PbTe-AgSbTe2. Z. Metallkd., 1963, 54, 311.

[12]

Marin R.M., Brun G., Tedenac J.C. Phase equilibria in the Sb2Te3-Ag2Te system. J. Mater. Sci., 1985, 20, 730.

[13]

Wolfe R., Wernick J.H., Haszko S.E. Anomalous hall effect in AgSbTe2. J. Appl. Phys., 1959, 31, 1959.

[14]

Rosi F.D., Hockings E.F., Lindenblad N.E. Semiconducting materials for thermoelectric power generation. RCA Rev., 1961, 22, 82.

[15]

Morelli D.T., Jovovic V., Heremans J.P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett., 2008, 101, 035901.

[16]

Zhang S.N., Zhu T.J., Yang S.H., Yu C., Zhao X.B. Phase compositions, nanoscale microstructures and thermoelectric properties in Ag2−ySbyTe1+y alloys with precipitated Sb2Te3 plates. Acta Mater., 2010, 58, 4160.

[17]

Quarez E., Hsu K.F., Pcionek R., Frangis N., Polychroniadis N.K., Kanatzidis M.G. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m: The myth of solid solutions. J. Am. Chem. Soc., 2005, 127, 9177.

[18]

Wang H., Li J.F., Zou M., Sui T. Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Appl. Phys. Lett., 2008, 93, 202106.

[19]

Jovovic V., Heremans J.P. Measurements of the energy band gap and valence band structure of AgSbTe2. Phys. Rev. B, 2008, 77, 245204.

[20]

Ye L.H., Hoang K., Freeman A.J., Mahanti S.D., He J., Tritt T.M., Kanatzidis M.G. First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe2. Phys. Rev. B, 2008, 77, 245203.

[21]

Zhang S.N., Zhu T.J., Yang S.H., Yu C., Zhao X.B. Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. J. Alloys Compd., 2010, 499, 215.

[22]

Taylor P.F., Wood C. Thermoelectric properties of Ag2Te. J. Appl. Phys., 1961, 32, 1.

[23]

Ishida A., Cao D., Morioka S., Veis M., Inoue Y., Kita T. Enhanced Seebeck coefficient in EuTe/PbTe [100] short-period superlattices. Appl. Phys. Lett., 2008, 92, 182105.

[24]

Nolas G.S., Sharp J., Goldsmid H.J. Hull R., Osgood R.M. Thermoelectrics: Basic principles and new materials developments. Basic Principles and New Materials Developments Thermoelectrics, 2001 New York, Springer, 292.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/