Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels

N. Innaurato , C. Oggeri , P. Oreste , R. Vinai

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (3) : 253 -259.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (3) : 253 -259. DOI: 10.1007/s12613-011-0431-z
Article

Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels

Author information +
History +
PDF

Abstract

To clarify some aspects of rock destruction with a disc acting on a high confined tunnel face, a series of tests were carried out to examine fracture mechanisms under an indenter that simulates the tunnel boring machine (TBM) tool action, in the presence of an adjacent groove, when a state of stress (lateral confinement) is imposed on a rock sample. These tests proved the importance of carefully establishing the optimal distance of grooves produced by discs acting on a confined surface, and the value (as a mere order of magnitude) of the increase of the thrust to produce the initiation of chip formation, as long as the confinement pressure becomes greater.

Keywords

tunnels / boring machines / rock mechanics / stress analysis

Cite this article

Download citation ▾
N. Innaurato, C. Oggeri, P. Oreste, R. Vinai. Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(3): 253-259 DOI:10.1007/s12613-011-0431-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Cordel, G. Comes, P. Duffaut, A. Valantin, M. Coder, and R. Perami, La géotechnique et le creusement mécanisé des tunnels, Institut Technique Du Batiment et des Travaux Publics, 1974.

[2]

P.J. Tarkoy and M. Marconi, Difficult rock comminution and associated geological conditions, [in] Proceeding of the 6th Congress on Tunnelling, London, 1991, p.195.

[3]

K. Gehring, Design criteria for TBM’s with respect to real rock response, [in] Proceeding of Tunnel Boring Machines: Trends in Design and Construction of Mechanised Tunnelling, Linz, 1995, p.43.

[4]

S. Klein, M. Schmoll, and T. Avrey, TBM performance at four hard rock tunnels in California, [in] Proceedings of the Rapid Excavation Tunnel Conference, S. Francisco, 1995, p.61.

[5]

N. Innaurato and P.P. Oreste, L’interazione roccia-utensile nelle macchine di scavo per roccia, [in] Atti dell’VIII Ciclo di Conferenze di Meccanica ed Ingegneria delle Rocce, Torino, 2000, p.111.

[6]

N. Innaurato and P. Oreste, Theoretical approach for assessment of the mechanics of rock failure in the TBMs tools-rock interaction, [in] Proceedings of the AITES-ITA World Tunnel Congress, Milan, 2001, p.227.

[7]

Barton N. TBM Tunnelling in Jointed and Faulted Rock, 2000 Rotterdam, Balkema, 177.

[8]

Movinkel T., Johannesen O. Geological parameters for hard rock tunnel boring. Tunnels Tunnelling Int., 1986, 18(4): 45.

[9]

Hartman H.L. Basic studies of percussion drilling. Min. Eng., 1959, 11, 68.

[10]

W.C. Maurer, The state of rock mechanics knowledge in drilling, [in]_Proceedings of the 8th Symposium on Rock Mechanics, University of Minnesota, 1966, p.355.

[11]

Nishimatsu Y. The mechanics of rock cutting. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1972, 9, 261.

[12]

Fourmaintraux, Machines foreuses pour tunnels et galeries, Techniques et bases théoriques de l’abattage mécanique des roches, Rapport de recherche N.20 L.C.P.C., 1972.

[13]

Gaye F. Efficient excavation with particular reference to cutting head design of hard rock tunnelling machines. Tunnels Tunnelling, 1972, 4, 39.

[14]

Itasca Consulting Group.. FLAC3D User’s Manual, 1996 Minnesota, ICG

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/