Mechanism of brittle-ductile transition of a glass-ceramic rigid substrate

Yu-li Sun , Dun-wen Zuo , Hong-yu Wang , Yong-wei Zhu , Jun Li

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (2) : 229 -233.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (2) : 229 -233. DOI: 10.1007/s12613-011-0427-8
Article

Mechanism of brittle-ductile transition of a glass-ceramic rigid substrate

Author information +
History +
PDF

Abstract

The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa·m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth

Keywords

brittle-ductile transition / critical conditions / glass ceramics / nanoindentation / nanoscratch

Cite this article

Download citation ▾
Yu-li Sun, Dun-wen Zuo, Hong-yu Wang, Yong-wei Zhu, Jun Li. Mechanism of brittle-ductile transition of a glass-ceramic rigid substrate. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(2): 229-233 DOI:10.1007/s12613-011-0427-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhushan B., Yang L.S., Gao C., et al. Friction and wear studies of magnetic thin-film rigid disks with glass-ceramic, glass and aluminum-magnesium substrates. Wear, 1995, 190(1): 44.

[2]

Tsai H.C. Advantages and challenge of nonmetallic substrates for rigid disk applications. IEEE Trans. Magn., 1993, 29(1): 241.

[3]

Tamaki J., Kubo A., Yan J.W. Experimental analysis of elastic and plastic behavior in ductile-regime machining of glass quartz utilizing a diamond tool. Key Eng. Mater., 2009, 389–390, 30.

[4]

Patten J.A., Jacob J. Comparison between numerical simulations and experiments for single-point diamond turning of single-crystal silicon carbide. J. Manuf. Processes, 2008, 10(1): 28.

[5]

Brehl D.E., Dow T.A. Review of vibration-assisted machining. Precis. Eng., 2008, 32(3): 153.

[6]

Rusnaldy Ko T.J., Kim H.S. An experimental study on microcutting of silicon using a micromilling machine. Int. J. Adv. Manuf. Technol., 2008, 39(1): 85.

[7]

Tang Y.Y., Yonezu A., Ogasawara N., Chiba N., Chen X. On radial crack and half-penny crack induced by Vickers indentation. Proc. R. Soc. A, 2008, 464(2099): 2967.

[8]

Chen X., Hntchineon J.W., Evane A.G. The mechanics of indentation induced lateral cracking. J. Am. Ceram. Soc., 2005, 88(5): 1233.

[9]

Zeng K.Y., Pang Y.S., Shen L., Rajan K.K., Lim L.C. Elastic modulus, hardness and fracture behavior of Pb(Zn1/3Nb2/3O3)-PbTiO3 single crystal. Mater. Sci. Eng. A, 2008, 472(1–2): 35.

[10]

Sun Y.L., Zuo D.W., Li D.S., Chen R.F., Wang M. Mechanism of brittle-ductile transition of single silicon wafer using nanoindentation techniques. Key Eng. Mater., 2008, 375–376, 52.

[11]

Li X.D., Bhushan B., Takashima K., Baek C.W., Kim Y.K. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy, 2003, 97(1–4): 481.

[12]

Lawn B.R., Evans A.G., Marshall D.B. Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc., 1980, 63(9–10): 574.

[13]

Zuo D.W., Sun Y.L., Zhao Y.F., Zhu Y.W. Basic research on polishing with ice bonded nanoabrasive pad. J. Vac. Sci. Technol. B, 2009, 27(3): 1514.

[14]

Bifano T.G., Dow T.G., Scattergood R.O. Ductile-regime grinding: A new technology for machining brittle materials. J. Eng. Ind., 1991, 113(2): 184.

[15]

Venkatesh V.C., Inasaki I., Toenshoff H.K., Nakagawa T., Marinescu I.D. Observations on polishing and ultraprecision machining of semiconductor substrate materials. CIRP Ann. Manuf. Technol., 1995, 44(2): 611.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/