Hydrogen absorption behavior of TA15 alloy

Xue-ping Ren , Fang-fang Zhang , Qing-miao Guo , Hong-liang Hou , Yao-qi Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (2) : 210 -215.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (2) : 210 -215. DOI: 10.1007/s12613-011-0424-y
Article

Hydrogen absorption behavior of TA15 alloy

Author information +
History +
PDF

Abstract

The hydrogen absorption kinetics of TA15 titanium alloy at 973–1123 K was studied using a tube-type hydrogen treatment furnace. The hydrogen absorption kinetic curves obtained were analyzed according to a series of mechanism equations to reveal the kinetic parameters and mechanism of the hydrogen absorption process. The results show that both the hydrogen absorption rate and the equilibrium hydrogen pressure increase and the time to reach equilibrium is shortened with increasing temperature. It is found that only the second hydrogen absorption period exists in the hydrogen absorption process of TA15 alloy between 973 and 1123 K, and the activation energy is 54.889 kJ/mol for hydrogen absorption. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results demonstrate that δ hydride forms between 973 and 1123 K, and β phase decreases with the increase of temperature. Orthorhombic α″ martensite is generated at 1073-1123 K, and their amount increases with increasing temperature.

Keywords

titanium alloy / kinetics / activation energy / microstructure

Cite this article

Download citation ▾
Xue-ping Ren, Fang-fang Zhang, Qing-miao Guo, Hong-liang Hou, Yao-qi Wang. Hydrogen absorption behavior of TA15 alloy. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(2): 210-215 DOI:10.1007/s12613-011-0424-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo Q.M., Liu B., Hou H.L., et al. Hydrogenation behavior of a porous Ti-6Al-4V alloy. J. Univ. Sci. Technol. Beijing, 2009, 31(4): 459.

[2]

Li X.H., Sun Z.G., Hou H.L., et al. Correlation between microstructure and room-temperature deformation behavior of the hydrogenated Ti-6Al-4V alloy. J. Univ. Sci. Technol. Beijing, 2008, 30(8): 888.

[3]

Sun Z.G., Zhou W.L., Hou H.L. Strengthening of Ti-6Al-4V alloys by thermohydrogen processing. Int. J. Hydrogen Energy, 2009, 34(4): 1971.

[4]

Sun Z.G., Hou H.L., Zhou W.L., et al. The effect of hydrogen on microstructures evolution and deformation behaviors of Ti-6Al-4V alloys. J. Alloys Compd., 2009, 476(1–2): 550.

[5]

Qazi J.I., Senkov O.N., Rahim J., et al. Kinetics of martensite decomposition in Ti-6Al-4V-xH alloys. Mater. Sci. Eng. A, 2003, 359(1–2): 137.

[6]

Li F.G., Yu X.L., Jiao L.K., et al. Research on low cycle fatigue properties of TA15 titanium alloy based on reliability theory. Mater. Sci. Eng. A, 2006, 430(1–2): 216.

[7]

Li S.K., Xiong B.Q., Hui S.X. Effects of cooling rate on the fracture properties of TA15 ELI alloy plates. Rare Met., 2007, 26(1): 33.

[8]

Zhu J.C., Wang Y., Liu Y., et al. Influence of deformation parameters on microstructure and mechanical properties of TA15 titanium alloy. Trans. Nonferrous Met. Soc. China, 2007, 17(Suppl.6): 490.

[9]

Xu W.C., Shan D.B., Wang Z.L., et al. Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy. Trans. Nonferrous Met. Soc. China, 2007, 17(6): 1205.

[10]

Liu L.M., Du X., Zhu M.L., et al. Research on the microstructure and properties of weld repairs in TA15 titanium alloy. Mater. Sci. Eng. A, 2007, 445–446, 691.

[11]

Wang Z.J., Song H. Effect of high-density electropulsing on microstructure and mechanical properties of cold-rolled TA15 titanium alloy sheet. J. Alloys Compd., 2009, 470(1–2): 522.

[12]

Martin M., Gommel C., Borkhart C., et al. Absorption and desorption kinetics of hydrogen storage alloys. J. Alloys Compd., 1996, 238(1–2): 193.

[13]

Chou K.C., Li Q., Lin Q., et al. Kinetics of absorption and desorption of hydrogen in alloy powder. Int. J. Hydrogen Energy, 2005, 30(3): 301.

[14]

Li Q., Xu K.D., Chou K.C., et al. Kinetics of hydrogen absorption and desorption of a mechanically milled MgH2+5at% V nanocomposite. J. Univ. Sci. Technol. Beijing, 2006, 13(4): 359.

[15]

Lin Q., Chen N., Ye W., et al. Kinetics of hydrogen absorption in hydrogen storage alloy. J. Univ. Sci. Technol. Beijing, 1997, 4(2): 34.

[16]

Ren X.P., Guo Q.M., Hou H.L., et al. Hydrogen absorption behavior of TC4 compacts. J. Univ. Sci. Technol. Beijing, 2009, 31(8): 1001.

[17]

Li Q., Chou K.C., Lin Q., et al. Hydrogen absorption and desorption kinetics of Ag-Mg-Ni alloys. Int. J. Hydrogen Energy, 2004, 29(8): 843.

[18]

Guo Q.M., Hou H.L., Ren X.P. Hydrogen absorption kinetics of porous Ti6Al4V alloys. J. Alloys Compd., 2009, 486(1–2): 754.

[19]

Ma J.X., Pan H.G., Wang X.H., et al. Hydrogen storage properties of FeTi1.3+x wt%Mm (x=0.0, 1.5, 3.0, 4.5, 6.0) hydrogen storage alloys. Int. J. Hydrogen Energy, 2000, 25(8): 779.

[20]

Wasilewski R.J., Kehl G.L. Diffusion of hydrogen in α-titanium. Metallurgia, 1954, 50, 225.

[21]

Papazoglou T.P., Hepworth M.T. The diffusion of hydrogen in titanium. Trans. Met. Soc. AIME, 1968, 242, 682.

[22]

Domizzi G., Luppo M.I., Vigna G. Microstructural features of the hydrogenation process in Ti grade 2. J. Alloys Coumpd., 2006, 424(1–2): 193.

[23]

Luo L.S., Su Y.Q., Guo J.J., et al. Formation of titanium hydride in Ti-6Al-4V alloy. J. Alloys Compd., 2006, 425(1–2): 140.

[24]

Hou H.L., Huang Z.G., Wang Y.Q. Microstructure evolution and superplasticity of hydrogenated Ti-6Al-4V titanium alloy. J. Univ. Sci. Technol. Beijing, 2008, 30(11): 1270.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/