Crystallization behavior of F-free mold fluxes

Zuo-tai Zhang , Guang-hua Wen , Ying-yi Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (2) : 150 -158.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (2) : 150 -158. DOI: 10.1007/s12613-011-0415-z
Article

Crystallization behavior of F-free mold fluxes

Author information +
History +
PDF

Abstract

The time-temperature-transformation (TTT) diagrams of F-free mold fluxes was constructed using single hot thermocouple technique (SHTT) and confocal scanning laser microscopy (CSLM) to study the crystallization behavior of F-free mold fluxes. The tendency of crystallization is found to increase whereas the incubation time decreases with increasing basicity. Zirconia addition enhances the crystallization tendency due to its limited solubility in the slag melt and the solid particles acting as nucleation sites. Pseudo-wollastonite is found to precipitate in the slag with low basicity (CS-1 and CS-2), kilchoanite and larnite are formed with further increasing basicity (CS-3), and larnite is finally formed as the basicity beyond unit (CS-4). The crystal morphology changes with varying compositions and isothermal temperatures. The measured growth rate is found to be linear with time under isothermal conditions and decreases with increasing isothermal temperature.

Keywords

continuous casting / mold fluxes / crystallization / zirconia / crystal growth

Cite this article

Download citation ▾
Zuo-tai Zhang, Guang-hua Wen, Ying-yi Zhang. Crystallization behavior of F-free mold fluxes. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(2): 150-158 DOI:10.1007/s12613-011-0415-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mills K.C., Fox A.B., Li Z., Thackray R.P. Performance and properties of mould fluxes. Ironmaking Steelmaking, 2005, 32(1): 26.

[2]

Mills K.C., Fox A.B. The role of mould fluxes in continuous casting: so simple yet so complex. ISIJ Int., 2003, 43(10): 1479.

[3]

Hill R.G., Costa N.D., Law R.V. Characterization of a mould flux glass. J. Non Cryst. Solids, 2005, 351(1): 69.

[4]

Wang W.L., Cramb A.W. The observation of mold flux crystallization on radiative heat transfer. ISIJ Int., 2005, 45(12): 1864.

[5]

Pinheiro C.A.M., Samarasekera I.V., Brimacombe J.K., Walker B.N. Heat transfer and continuously cast billet quality with mould flux lubrication: Part 1. Mould heat transfer. Ironmaking Steelmaking, 2000, 27(1): 37.

[6]

Mills K.C., Fox A.B. Mould fluxes. High Temp. Mater. Processes, 2004, 22(2): 291.

[7]

Sridhar S., Mills K.C., Afranqe O.D.C., Lörz H.P., Carli R. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmaking Steelmaking, 2000, 27(3): 238.

[8]

Mills K.C. Physical properties of casting powders: Part 1. Scheme to represent chemical compositions of powders. Ironmaking Steelmaking, 1988, 15(4): 175.

[9]

Orrling C. Crystallization Phenomena in Slags, 2000 Pittsburgh, Carnegie Mellon University, 8.

[10]

Zaitsev A.I., Leites A.V., Litvina A.D., Mogutnov B.M. Invetigation of the mould powder volatiles during continuous casting. Steel Res., 1994, 65(9): 368.

[11]

Persson M., Sridhar S., Seetharaman S. Kinetic studies of fluoride evaporation from slags. ISIJ Int., 2007, 47(12): 1711.

[12]

Fox A.B., Mills K.C., Lever D., et al. Development of fluoride-free fluxes for billet casting. ISIJ Int., 2005, 45(7): 1051.

[13]

Choi S.Y., Lee D.H., Shin D.W., Choi S.Y., Cho J.W., Park J.M. Properties of F-free glass system as a mold flux: viscosity, thermal conductivity and crystallization behavior. J. Non Cryst. Solids, 2004, 345–346(10): 157.

[14]

Wen G.H., Sridhar S., Tang P., Qi X., Liu Y.Q. Development of fluoride-free mold powders for peritectic steel slab casting. ISIJ Int., 2007, 47(8): 1117.

[15]

Nakada H., Nagata K. Crystallization of CaO-SiO2-TiO2 slag as a candidate for fluorine free mold flux. ISIJ Int., 2006, 46(3): 441.

[16]

Yamauchi A., Sorimachi K., Sakuraya T., Fujii T. Heat transfer between mold and strand through mold flux film in continuous casting of steel. ISIJ Int., 1993, 33(1): 140.

[17]

Kawamoto M., Tsukaguchi Y., Nishida N., Kanazawa T., Hiraki S. Improvement of the initial stage of solidification by using mild cooling mold powder. ISIJ Int., 1997, 27(2): 134.

[18]

Susa M., Mills K.C., Richardson M.J., Taylor R., Stewart D. Thermal properties of slag films taken from continuous casting mould. Ironmaking Steelmaking, 1994, 21(4): 279.

[19]

Susa M., Li F., Nagata K. Thermal conductivity, thermal diffusivity, and specific heat of slags containing iron oxides. Ironmaking Steelmaking, 1993, 20(3): 201.

[20]

Taylor R., Mills K.C. Physical properties of casting powders: Part 3. Thermal conductivities of casting powders. Ironmaking Steelmaking, 1988, 15(4): 187.

[21]

Cho J.W., Emi T., Shibata H., Suzuki M. Heat transfer across mold flux film in mold during initial solidification in continuous casting of steel. ISIJ Int., 1998, 38(8): 834.

[22]

Grieveson P., Bagha S., Machingawuta N., Liddel K., Mills K.C. Physical properties of casting powders: Part 2. Mineralogical constitution of slags formed by powders. Ironmaking Steelmaking, 1988, 15(4): 181.

[23]

Kashiwaya Y., Cicutti C.E., Cramb A.W. Investigation of the crystallization of a continuous casting mold slag using the single hot thermocouple technique. ISIJ Int., 1998, 38(4): 357.

[24]

Schmidt E.D., Damn E.B., Sridhar S. A study of diffusion- and interface-controlled migration of the austenite/ferrite front during austenitization of a case-hardenable alloy steel. Metall. Mater. Trans. A, 2007, 38(2): 244.

[25]

Yin H., Emi T., Shibata H. Morphological instability of δ-ferrite/γ-austenite interphase boundary in low carbon steels. Acta. Mater., 1999, 47(5): 1523.

[26]

Mills K. C. Mold Powders for Continuous Casting, 2003 London, Imperial College London Press, 1.

[27]

Mills K.C. Slag Atlas, 1995 Germany, Verein Deutscher Eisenhuttenleute (VDEh), 349.

[28]

Fox A.B., Valdez M.E., Gisby J., et al. Dissolution of ZrO2, Al2O3 and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag. ISIJ Int., 2004, 44(5): 836.

[29]

Orrling C., Cramb A.W., Tillander A., Kashiwaya Y. Observation of the melting and solidification behavior of mold slags. Iron Steelmaker, 2000, 27(1): 53.

[30]

Bale C.W., Chartrand P., Degterov S.A., et al. Factsage thermochemical software and databases. Calphad, 2002, 26(2): 18.

[31]

Jackson K.A. Liquid Metals and Solidification, 1958 Cleveland, American Society for Metals, 174.

[32]

Vergano P.J., Uhlmann D.R. Crystallisation kinetics of germanium dioxide: the effect of stoichiometry on kinetics. Phys. Chem. Glasses, 1970, 11(1): 30.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/