Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy

Xue-qun Cheng , Cheng-tao Li , Chao-fang Dong , Xiao-gang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (1) : 42 -47.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2011, Vol. 18 ›› Issue (1) : 42 -47. DOI: 10.1007/s12613-011-0397-x
Article

Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy

Author information +
History +
PDF

Abstract

The passive film formed on 2205 duplex stainless steel (DSS) in 0.5 M NaHCO3+0.5 M NaCl aqueous solution was characterized by electrochemical measurements, including potentiodynamic anodic polarization and dynamic electrochemical impedance spectroscopy (DEIS). The results demonstrate that there is a great difference between the passive film evolutions of ferrite and austenite. The impedance values of ferrite are higher than those of austenite. The impedance peaks of ferritic and austenitic phases correspond to the potential of 0.15 and 0.25 V in the low potential range and correspond to 0.8 and 0.75 V in the high potential range. The evolutions of the capacitance of both phases are reverse compared to the evolutions of impedance. The thickness variations obtained from capacitance agree well with those of impedance analysis. The results can be used to explain why pitting corrosion occurs more easily in austenite phase than in ferrite phase.

Keywords

stainless steel / electrochemical impedance spectroscopy / ferrite / austenite / passivation / films

Cite this article

Download citation ▾
Xue-qun Cheng, Cheng-tao Li, Chao-fang Dong, Xiao-gang Li. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(1): 42-47 DOI:10.1007/s12613-011-0397-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antony P.J., Chongdar S., Kumar P., Raman R. Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria. Electrochim. Acta, 2007, 52, 3985.

[2]

Cheng X.Q., Li X.G., Dong C.F. Study on the passive film formed on 2205 stainless steel in acetic acid by AAS and XPS. Int. J. Miner. Metall. Mater., 2009, 16, 170.

[3]

Antony P.J., Singh Raman R.K., Mohanram R., et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel. Corros. Sci., 2008, 50, 1858.

[4]

Liou H.Y., Hsieh R.I., Tsai W.T. Microstructure and stress corrosion cracking in simulated heat-affected zones of duplex stainless steels. Corros. Sci., 2002, 44, 2841.

[5]

Távara S.A., Chapetti M.D., Otegui J.L., et al. Influence of nickel on the susceptibility to corrosion fatigue of duplex stainless steel welds. Int. J. Fatigue, 2001, 23, 619.

[6]

Olsson C.A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS. Corros. Sci., 1995, 37, 467.

[7]

Blanco G., Bautista A., Takenouti H. EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions. Cem. Concr. Compos., 2006, 28, 212.

[8]

Michalska J., Sozańska M., Hetmańczyk M. Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Mater. Charact., 2009, 60, 1100.

[9]

Da Cunha Belo M., Walls M., Hakiki N.E., et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment. Corros. Sci., 1998, 40, 447.

[10]

Hakiki N.E., Montemor M.F., Ferreira M.G.S., et al. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corros. Sci., 2000, 42, 687.

[11]

Cheng X.Q., Li X.G., Du C.W., Yang L.X. Electrochemical properties of passivation film formed on 316L stainless steel in acetic acid. J. Univ. Sci. Technol. Beijing (in Chinese), 2007, 29(9): 911.

[12]

Cheng X.Q., Li X.G., Du C.W. Self-passivation behavior of 316L stainless steel in high-temperature acetic acid solution. J. Univ. Sci. Technol. Beijing (in Chinese), 2006, 28(9): 840.

[13]

Lo I.H., Tsai W.T. Effect of selective dissolution on fatigue crack initiation in 2205 duplex stainless steel. Corros. Sci., 2007, 49, 1847.

[14]

Femenia M., Pan J., Leygraf C., et al. In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy. Corros. Sci., 2001, 43, 1939.

[15]

Marasco A.L., Young D.J. The oxidation of iron-chromium-manganese alloys at 900°C. Oxid. Met., 1991, 36, 157.

[16]

Vesel A., Mozetic M., Drenik A., et al. High temperature oxidation of stainless steel AISI316L in air plasma. Appl. Surf. Sci., 2008, 255, 1759.

[17]

Tsai W.T., Chen J.R. Galvanic corrosion between the constituent phases in duplex stainless steel. Corros. Sci., 2007, 49, 3659.

[18]

Tan H., Jiang Y.M., Deng B., et al. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750. Mater. Charact., 2009, 60, 1049.

[19]

Domínguez-Aguilar M.A., Newman R.C. Detection of deleterious phases in duplex stainless steel by weak galvanostatic polarization in alkaline solution. Corros. Sci., 2006, 48, 2560.

[20]

Hussain E.A.M., Robinson M.J. Erosion-corrosion of 2205 duplex stainless steel in flowing seawater containing sand particles. Corros. Sci., 2007, 49, 1737.

[21]

Hussain E.A.M. An Electrochemical Investigation of Erosion Corrosion of Duplex Stainless Steel in Seawater Containing Sand Particles, 2001 Cranfield, Cranfield University, 26.

[22]

Symniotis E. Galvanic effects on the active dissolution of duplex stainless steels. Corrosion, 1990, 46, 2.

[23]

Lo I.H., Fu Y., Lin C.J., et al. Effect of electrolyte composition on the active-to-passive transition behavior of 2205 duplex stainless steel in H2SO4/HCl solutions. Corros. Sci., 2006, 48, 696.

[24]

Park C.J., Kwon H.S., Lohrengel M.M. Micro-electrochemical polarization study on 25% Cr duplex stainless steel. Mater. Sci. Eng. A, 2004, 372, 180.

[25]

Chao C.Y., Lin L.F., Macdonald D.D. A point defect model for anodic passive films. I. Film growth kinetics. J. Electrochem. Soc., 1981, 128, 1187.

[26]

Nilsson J.O., Karlsson P., Wilson A., et al. Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel. Metall. Mater. Trans. A, 2000, 31, 35.

[27]

Deng B., Wang Z.Y., Jiang Y.M., et al. Evaluation of localized corrosion in duplex stainless steel aged at 850°C with critical pitting temperature measurement. Electrochim. Acta, 2009, 54, 2790.

[28]

Sudesh T.L., Wijesinghe L., Blackwood D.J. Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels. Corro. Sci., 2008, 50, 23.

[29]

Lin C., Li X.G., Dong C.F. Galvanic corrosion behavior of stainless steel with weld in wet-dry environment containing Cl. J. Univ. Sci. Technol. Beijing, 2007, 14, 517.

[30]

Meng G.Z., Li Y., Wang F.H. The corrosion behavior of Fe-10Cr nanocrystalline coating. Electrochim. Acta, 2006, 51, 4277.

[31]

Sikora E., Sikora J., Macdonald D.D. A new method for estimating the diffusivities of vacancies in passive films. Eletrochim. Acta, 1996, 41, 783.

[32]

Hakiki N.E., Da Cunha Belo M., Simoěs A.M.P., et al. Semiconducting properties of passive films formed on stainless steels: influence of the alloying elements. J. Electrochem. Soc., 1998, 145, 3821.

[33]

Di Paola A. Semiconducting properties of passive films on stainless steels. Electrochim. Acta, 1989, 34, 203.

[34]

Lin L.F., Chao C.Y., Macdonald D.D. Point defect model for anodic passive films: 2. Chemical breakdown and pit initiation. J. Electrochem. Soc., 1981, 128, 1194.

[35]

Chao C.Y., Lin L.F., Macdonald D.D. Point defect model for anodic passive films. J. Electrochem. Soc., 1982, 129, 1874.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/