Crystal structure and negative thermal expansion of solid solution Lu2W3−xMo xO12

Jie Peng , Xin-zhi Liu , Fu-li Guo , Song-bai Han , Yun-tao Liu , Dong-feng Chen , Zhong-bo Hu

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (6) : 786 -790.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (6) : 786 -790. DOI: 10.1007/s12613-010-0390-9
Article

Crystal structure and negative thermal expansion of solid solution Lu2W3−xMo xO12

Author information +
History +
PDF

Abstract

A new series of solid solutions Lu2W3−xMo xO12 (0.5≤x≤2.5) were successfully synthesized by the solid-state method. Their crystal structure and negative thermal expansion properties were studied using high-temperature X-ray powder diffraction and the Rietveld method. All samples of rare-earth tungstates and molybdates are found to crystallize in the same orthorhombic structure with space group Pnca and show the negative thermal expansion phenomena related to transverse vibration of bridging oxygen atoms in the structure. Thermal expansion coefficients (TEC) of Lu2W3−xMo xO12 are determined as −20.0×10−6 K−1 for x=0.5 and −16.1×10−6 K−1 for x=2.5 but -18.6×10−6 and −16.9×10−6 K−1 for unsubstituted Lu2W3O12 and Lu2Mo3O12 in the identical temperature range of 200 to 800°C. High-temperature X-ray diffraction (XRD) data and bond length analysis suggest that the difference between W-O and Mo-O bond is responsible for the change of TECs after the element substitution in this series of solid solutions.

Keywords

rare earth compounds / molybdates / rare-earth tungstates / negative thermal expansion / X-ray diffraction

Cite this article

Download citation ▾
Jie Peng, Xin-zhi Liu, Fu-li Guo, Song-bai Han, Yun-tao Liu, Dong-feng Chen, Zhong-bo Hu. Crystal structure and negative thermal expansion of solid solution Lu2W3−xMo xO12. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(6): 786-790 DOI:10.1007/s12613-010-0390-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Evans J.S.O., Mary T.A., Sleight A.W. Negative thermal expansion in Sc2(WO4)3. J. Solid State Chem., 1998, 137, 148.

[2]

Evans J.S.O., Mary T.A. Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int. J. Inorg. Mater, 2000, 2, 143.

[3]

Forster P.M., Sleight A.W. Negative thermal expansion in Y2W3O12. Int. J. Inorg. Mater., 1999, 1, 123.

[4]

Woodcock D.A., Lightfoot P., Ritter C. Negative thermal expansion in Y2(WO4)3. J. Solid State Chem., 2000, 149, 92.

[5]

Sumithra S., Umarji A.M. Hygroscopicity and bulk thermal expansion in Y2W3O12. Mater. Res. Bull., 2005, 40, 167.

[6]

Marinkovic B.A., Jardim P.M., Avillez R.R.D., Rizzo F. Negative thermal expansion in Y2Mo3O12. Solid State Sci., 2005, 7, 1377.

[7]

Xiao X.L., Cheng Y.Z., Peng J., Wu M.M., Chen D.F., Hu Z.B. Thermal expansion properties of A2(MO4)3 (A=Ho and Tm; M=W and Mo). Solid State Sci., 2008, 10, 321.

[8]

Sumithra S., Tyagi A.K., Umarji A.M. Negative thermal expansion in Er2W3O12 and Yb2W3O12 by high temperature X-ray diffraction. Mater. Sci. Eng. B, 2005, 116, 14.

[9]

Sumithra S., Umarji A.M. Negative thermal expansion in rare earth molybdates. Solid State Sci., 2006, 8, 1453.

[10]

Forster P.M., Yokochi A., Sleight A.W. Enhanced negative thermal expansion in Lu2W3O12. J. Solid State Chem., 1998, 140, 157.

[11]

Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 1976, 32, 751.

[12]

Jia Y.Q. Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem., 1991, 95, 184.

[13]

Sumithra S., Umarji A.M. Role of crystal structure on the thermal expansion of Ln2W3O12 (Ln=La, Nd, Dy, Y, Er and Yb). Solid State Sci., 2004, 6, 1313.

[14]

Zhao X.H. The synthesis and structure of Al2Mo3−xWxO12. Chem J. Chin. Univ., 1999, 20, 339.

[15]

Shen R., Wang T.M. The synthesis and thermal expansion of Al2Mo3−xWxO12. Rare Met. Mater. Eng., 2004, 33, 91.

[16]

Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B, 1993, 192, 55.

[17]

Lubarda V.A. On the effective lattice parameter of binary alloys. Mech. Mater., 2003, 35, 53.

[18]

Lambregts M.J., Frank S. Application of Vegard’s law to mixed cation sodalites: A simple method for determining the stoichiometry. Talanta, 2004, 26, 627.

[19]

Duan N., Kameswari U., Sleight A.W. Further contraction of ZrW2O8. J. Am. Chem. Soc., 1999, 121, 10432.

[20]

Xing X.R., Chen J., Deng J.X., Liu G.R. Solid solution Pb1−xSrxTiO3 and its thermal expansion. J. Alloys Compd., 2003, 360, 286.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/