Incubation and development of corrosion in microstructures of low alloy steels under a thin liquid film of NaCl aqueous solution

Wen-hua Zhang , Shan-wu Yang , Jia Guo , Zhi-yong Liu , Xin-lai He

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (6) : 748 -755.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (6) : 748 -755. DOI: 10.1007/s12613-010-0384-7
Article

Incubation and development of corrosion in microstructures of low alloy steels under a thin liquid film of NaCl aqueous solution

Author information +
History +
PDF

Abstract

Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different microstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructures may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long term. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.

Keywords

alloy steel / microstructure / atmospheric corrosion / liquid films / scanning electron microscope

Cite this article

Download citation ▾
Wen-hua Zhang, Shan-wu Yang, Jia Guo, Zhi-yong Liu, Xin-lai He. Incubation and development of corrosion in microstructures of low alloy steels under a thin liquid film of NaCl aqueous solution. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(6): 748-755 DOI:10.1007/s12613-010-0384-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yamashita M., Miyuki H., Matsuda Y., Nagano H., Misawa T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros. Sci., 1994, 36(2): 283.

[2]

Kamimura T., Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros. Sci., 2001, 43(3): 429.

[3]

Stratmann M., Bohnenkamp K., Ramchandran T. The influence of copper upon the atmospheric corrosion. Corros. Sci., 1987, 27(9): 905.

[4]

Nishimura T.O., Katayama H., Noda K., Kodama T. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments. Corros. Sci., 2000, 42(9): 1611.

[5]

Zhang Q.C., Wu J.S., Wang J.J., et al. Corrosion behavior of weathering steel in marine atmosphere. Mater. Chem. Phys., 2002, 77(2): 603.

[6]

Chen X.H., Dong J.H., Han E.H., Ke W. Effect of Ni on the ion-selectivity of rust layer on low alloy steel. Mater. Lett., 2007, 61(19): 4050.

[7]

Itagaki M., Nozue R., Watanabe K., et al. Electrochemical impedance of thin rust film of low-alloy steels. Corros. Sci., 2004, 46(5): 1301.

[8]

Kumar A.V.R., Balasubramaniam R. Corrosion product analysis of corrosion resistant ancient Indian iron. Corros. Sci., 1998, 40(7): 1169.

[9]

Balasubramaniam R. On the corrosion resistance of the Delhi iron pillar. Corros. Sci., 2000, 42(11): 2103.

[10]

Sahoo G., Balasubramaniam R. On the corrosion behaviour of phosphoric irons in simulated concrete pore solution. Corros. Sci., 2008, 50(1): 131.

[11]

Nishikata A., Suzuki F., Tsuru T. Corrosion monitoring of nickel-containing steels in marine atmospheric environment. Corros. Sci., 2005, 47(10): 2578.

[12]

Hodgkiess T., Vassiliou G. Complexities in the erosion corrosion of copper-nickel alloys in saline water. Desalination, 2005, 183(2): 235.

[13]

Nishimura T., Kodama T. Clarification of chemical state for alloying elements in iron rust using a binary-phase potential-pH diagram and physical analyses. Corros. Sci., 2003, 45(5): 1073.

[14]

Mizoguchi T., Ishii Y., Okada T., et al. Magnetic property based characterization of rust on weathering steels. Corros. Sci., 2005, 47(10): 2477.

[15]

Nishkata A., Yamashita Y., Katayama H., et al. An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition. Corros. Sci., 1995, 37(12): 2059.

[16]

Zhao Y.T., Yang S.W., Shang C.J., et al. The mechanical properties and corrosion behaviors of ultra-low carbon microalloying steel. Mater. Sci. Eng. A, 2007, 454–455(4): 695.

[17]

Guo J., Yang S.W., Shang C.J., et al. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl containing environment. Corros. Sci., 2009, 51(9): 242.

[18]

Guo J., Yang S.W., Shang C.J., et al. Incubation and development of atmospheric corrosion in the microstructures of low alloy steels. J. Univ. Sci. Technol. Beijing, 2009, 31(7): 848.

[19]

Paolinelli L.D., Pérez T., Simison S.N. The effect of pre-corrosion and steel microstructure on inhibitor performance in CO2 corrosion. Corros. Sci., 2008, 50(9): 2456.

[20]

Hashem A.A., Riad W. The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater. Mater. Charact., 2002, 48(2): 37.

[21]

López D.A., Schreiner W.H., De Sánchez S.R., Simison S.N. The influence of carbon steel microstructure on corrosion layers an XPS and SEM characterization. Appl. Surf. Sci., 2003, 207(2): 69.

[22]

López D.A., Pérez T., Simison S.N. The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal. Mater. Design, 2003, 24(8): 561.

[23]

Kamimura T., Hara S., Miyuki H., et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros. Sci., 2006, 48(9): 2799.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/