Machining studies of die cast aluminum alloy-silicon carbide composites

Thambu Sornakumar , Marimuthu Kathiresan

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (5) : 648 -653.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (5) : 648 -653. DOI: 10.1007/s12613-010-0369-6
Article

Machining studies of die cast aluminum alloy-silicon carbide composites

Author information +
History +
PDF

Abstract

Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.

Keywords

metal matrix composites / aluminum alloys / silicon carbide / die casting / milling / surface roughness

Cite this article

Download citation ▾
Thambu Sornakumar, Marimuthu Kathiresan. Machining studies of die cast aluminum alloy-silicon carbide composites. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(5): 648-653 DOI:10.1007/s12613-010-0369-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barnes S., Pashby I.R., Hashim A.B. Effect of heat treatment on the drilling performance of aluminium/SiC MMC. Appl. Compos. Mater., 1999, 6, 121.

[2]

El-Gallab M., Sklad M. Machining of Al/SiC particulate metal-matrix composites Part I: Tool performance. J. Mater. Process. Technol., 1998, 83, 151.

[3]

Kannan S., Kishawy H.A. Tribological aspects of machining aluminium metal matrix composites. J. Mater. Process. Technol., 2008, 198, 399.

[4]

Allison J.E., Cole G.S. Metal-matrix composites in the automotive industry: Opportunities and challenges. JOM, 1993, 45, 19.

[5]

Lloyd D.J. Particle reinforced aluminum and magnesium matrix composite. Int. Mater. Rev., 1994, 39, 1.

[6]

Surappa M.K., Rohatgi P.K. Preparation and properties of aluminium alloy ceramic particle composites. J. Mater. Sci., 1981, 16, 983.

[7]

Surappa M.K. Aluminium matrix composites: Challenges and opportunities. Sadhana, 2003, 28, 319.

[8]

Sornakumar T., Kumar A.S. Machinability of bronzealumina composite with tungsten carbide cutting tool insert. J. Mater. Process. Technol., 2008, 202, 402.

[9]

Tharumarajah A. Benchmarking aluminium die casting operations. Resour. Conserv. Recycl., 2008, 52, 1185.

[10]

Lumley R.N., Polmear I.J., Groot H., Ferrier J. Thermal characteristics of heat-treated aluminum high-pressure die-castings. Scripta Mater., 2008, 58, 1006.

[11]

Gologlu C., Sakarya N. The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method. J. Mater. Process. Technol., 2008, 206, 7.

[12]

Walsh R.A. Handbook of Machining and Metalworking Calculations, 2001 New York, McGraw-Hill, 5.22.

[13]

Liang M., Yeap T., Rahmati S., Han Z.X. Fuzzy control of spindle power in end milling processes. Int. J. Mach. Tools Manuf., 2002, 42, 1487.

[14]

Sornakumar T., Krishnamurthy R., Gokularathnam C.V. Machining performance of phase transformation toughened alumina and partially stabilised zirconia composite cutting tools. J. Eur. Ceram. Soc., 1993, 12, 455.

[15]

SreeramaReddy T.V., Sornakumar T., VenkataramaReddy M., Venkatram R. Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts. Int. J. Refract. Met. Hard Mater., 2009, 27, 181.

[16]

Senthilkumar A., Rajadurai A., Sornakumar T. Machinability of hardened steel using alumina based ceramic cutting tools. Int. J. Refract. Met. Hard Mater., 2003, 21, 109.

[17]

Senthilkumar A., Rajadurai A., Sornakumar T. Wear behavior of alumina based ceramic cutting tools on machining steels. Tribol. Int., 2006, 39, 191.

[18]

Kalpakjian S. Manufacturing Engineering and Technology, 1995 Reading, Massachusetts, Addison Wesley Publishing Company, 594.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/