Phase field simulation of the 180° domain-switching process in PbTiO3 single crystal under an antiparallel electric field

Ping-Li Liu , Wu-Yang Chu , Li-Jie Qiao

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (4) : 494 -499.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (4) : 494 -499. DOI: 10.1007/s12613-010-0347-z
Article

Phase field simulation of the 180° domain-switching process in PbTiO3 single crystal under an antiparallel electric field

Author information +
History +
PDF

Abstract

The process of 180° domain switching in PbTiO3 single crystal under an antiparallel electric field was investigated by the three-dimensional phase field simulation, especially the effect of electric field on the type and duration of domain switching. It is found that the polarization reversal of domains takes place under an antiparallel electric field in PbTiO3 single crystal. The results of the phase field simulation indicate that there is only 90° domain switching under a weak electric field. With the rise of the electric field, 180° domain switching appears. If the electric field is strengthened further, 90° domain switching disappears and the duration of domain switching is shortened.

Keywords

phase field simulation / ferroelectric materials / electric field / domain switching

Cite this article

Download citation ▾
Ping-Li Liu, Wu-Yang Chu, Li-Jie Qiao. Phase field simulation of the 180° domain-switching process in PbTiO3 single crystal under an antiparallel electric field. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(4): 494-499 DOI:10.1007/s12613-010-0347-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen P.J., Tucker T.J. One dimensional polar mechanical and dielectric responses of the ferroelectric ceramic PZT 65/35 due to domain switching. Int. J. Eng. Sci., 1981, 19(1): 147.

[2]

Huo Z.Y., Jiang Q. Modeling of domain switching in ferroelectric ceramics: An example. Int. J. Solids Struct., 1998, 35(13): 1339.

[3]

Arlt G. A physical model for hysteresis curves of ferroelectric ceramics. Ferroelectrics, 1996, 189(1–4): 103.

[4]

Fan J., Stoll W.A., Lynch C.S. Nonlinear constitutive behavior of soft and hard PZT: Experiments and modeling. Acta Mater., 1999, 47(17): 4415.

[5]

Gao Y.F., Suo Z. Domain dynamics in a ferroelastic epilayer on a paraelastic substrate. J. Appl. Mech., 2002, 69(4): 419.

[6]

McMeeking R.M., Hwang S.C. On the potential energy of a piezoelectric inclusion and the criterion for ferroelectric switching. Ferroelectrics, 1997, 200(1–4): 151.

[7]

Huber J.E., Fleck N.A., Landis C.M., McMeeking R.M. A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids, 1999, 47(8): 1663.

[8]

Hwang S.C., McMeeking R.M. A finite element model of ferroelectric polycrystals. Ferroelctrics, 1998, 211(1–4): 177.

[9]

Hwang S.C., McMeeking R.M. A finite element model of ferroelastic polycrystals. Int. J. Solids Struct., 1999, 36(10): 1541.

[10]

Landis C.M. On the fracture toughness of ferroelastic materials. J. Mech. Phys. Solids., 2003, 51(8): 1347.

[11]

X.Y. Qi, H.H. Liu, and X.F. Duan, In situ transmission electron microscopy study of electric-field-induced 90 domain switching in BaTiO3 single crystals, Appl. Phys. Lett., 89(2006), No.9, art. No.092908.

[12]

Zhang Z.H., Qi X.Y., Duan X.F. Two-step evolution mechanism of multi-domains in BaTiO3 single crystal investigated by in situ transmission electron microscopy. Scripta Mater., 2008, 58(6): 441.

[13]

Huang K.Z., Wang Z.Q. Macro-micro-mechanics and Strengthening and Toughening Design of Material, 2003 Beijing, Tsinghua University Press, 206.

[14]

Yang W. Mechatronic Reliability, 2001 Beijing, Tsinghua University Press, 108.

[15]

Zhang Z.K., Fang D.N., Soh A.K. A new criterion for domain-switching in ferroelectric materials. Mech. Mater., 2006, 38(1–2): 25.

[16]

Burcsu E., Ravichandran G., Bhattacharya K. Large strain electrostrictive actuation in barium titanate. Appl. Phys. Lett., 2000, 77(11): 1698.

[17]

B. Jiang, Y. Bai, W.Y. Chu, Y.J. Su, and L.J. Qiao, Direct observation of two 90° steps of 180° domain switching in BaTiO3 single crystal under an antiparallel electric field, Appl. Phys. Lett., 93(2008), No.15, art. No.152905.

[18]

Li Y.L., Hu S.Y., Liu Z.K., Chen L.Q. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater., 2002, 50(2): 395.

[19]

Li Y.L., Hu S.Y., Liu Z.K., Chen L.Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett., 2002, 81(3): 427.

[20]

Chen L.Q., Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun., 1998, 108(2–3): 147.

[21]

Amin A., Newnham R.E., Cross L.E. Effect of elastic boundary conditions on morphotropic Pb(Zr,Ti)O3 piezoelectrics. Phys. Rev. B, 1986, 34(3): 1595.

[22]

Haun M.J., Furman E., Jang S.J., Mckinstry H.A., Cross L.E. Thermodynamic theory of PbTiO3. J. Appl. Phys., 1987, 62, 3331.

[23]

Wang J., Shi S.Q., Chen L.Q., Li Y.L., Zhang T.Y. Phase field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater., 2004, 52(3): 749.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/