Oxidation behavior of the Fe-36Al-0.09C-0.09B-0.04Zr alloy at 1250°C

Jun-you Liu , Feng Li , Jie Liu , Yi Zhang , Jin-cheng Jiang , Dun-xu Zou

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (4) : 441 -447.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (4) : 441 -447. DOI: 10.1007/s12613-010-0338-0
Article

Oxidation behavior of the Fe-36Al-0.09C-0.09B-0.04Zr alloy at 1250°C

Author information +
History +
PDF

Abstract

To explore and study the Fe-Al system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250°C were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructure of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250°C. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250°C. The oxidation mechanism at 1250°C is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3.

Keywords

Fe-alloy / oxidation behavior / oxide film / oxidation thermodynamics / oxidation kinetics

Cite this article

Download citation ▾
Jun-you Liu, Feng Li, Jie Liu, Yi Zhang, Jin-cheng Jiang, Dun-xu Zou. Oxidation behavior of the Fe-36Al-0.09C-0.09B-0.04Zr alloy at 1250°C. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(4): 441-447 DOI:10.1007/s12613-010-0338-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li T.F. High-temperature Oxidation and Thermal Corrosion of Metals, 2004 Beijing, Chemical Industry Press, 1.

[2]

Reddy B.V., Deevi S.C. Thermophysical properties of FeAl(Fe-40at% Al). Intermetallics, 2000, 8, 1369.

[3]

Gedevanishvili S., Deevi S.C. Processing of iron aluminides by pressureless sintering through Fe+Al elemental route. Mater. Sci. Eng., 2002, 325, 163.

[4]

Schneibela J.H., Pikeb L.M. A technique for measuring thermal vacancy concentrations in stoichiometric FeAl. Intermetallics, 2004, 12, 85.

[5]

Haraguchi T., Yoshimi K., Kato H., et al. Determination of density and vacancy concentration in rapidly solidified FeAl ribbons. Intermetallics, 2003, 11, 707.

[6]

Nakamura R., Takasawa K., Yamazaki Y., et al. Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl. Intermetallics, 2002, 10, 195.

[7]

Sundar R.S., Deevi S.C. High-temperature strength and creep resistance of FeAl. Mater. Sci. Eng. A, 2003, 357, 124.

[8]

Prakash U., Sautho G. Structure and properties of Fe-Al-Ti intermetallic alloys. Intermetallics, 2001, 9, 107.

[9]

Tan M.H., Guo J.T., Sun C., et al. High-temperature oxidation behavior long-range ordered intermetallic compound FeAl and Fe3Al alloys. Corros. Sci. Prot. Technol., 1991, 3(4): 10.

[10]

Zhang Y.G., Han Y.F., Chen G.L., et al. Intermetallic Structural Materials, 2001 Beijing, National Defense Industry Press, 378.

[11]

Liu F.X., Huang B.Y., Zhou K.C., et al. Progress and development trend of FeAl alloy. Mater. Sci. Eng. Powder Metall., 2000, 5(3): 193.

[12]

X. Feng and Y. Jin, Contrast study on the oxidation property of 2.25Cr-1Mo and Fe-Al alloys under high temperature, J. Agric. Mech. Res., 2004, No.3, p.146.

[13]

G.R. Lu, J.H. Xu, and S.P. He, High-Cr ferritic heat-resistant cast steel, Chinese Patent CN 1032680A, 1989-05-03.

[14]

D.P. Zhang, S.J. Zhang, and Q.X. Yuan, High-temperature Anti-oxidant Cast Cr-Si Steel, Chinese Patent, CN1056420C, 2000-09-13.

[15]

Zhou R.F., Han Y.F., Li S.S. High Temperature Structure Materials, 2006 Beijing, National Defense Industry Press, 161.

[16]

Sun C., Guo J.T., Wang S.H., et al. Oxidation behavior of Fe3Al and FeAl alloys. Corros. Sci. Prot. Technol., 1993, 5(2): 109.

[17]

Xiao Y.F., Li W.B. Physical Chemistry, 2005 Tianjin, Tianjin University Press, 479.

[18]

H.L. Liu, X.Y. Teng, Z.F. Wang, et al., Oxidation resistance of Fe-Cr-Ni-N heat-resistance steel, Foundry Technol., 2001, No.6, p.55.

[19]

Zhan Q., Yang H.G., Zhao W.W., et al. Characterization of FeAl/Al2O3 tritium permeation barrier prepared by pack aluminizing and vacuum preoxidating. Trans. Mater. Heat Treat., 2008, 29(2): 158.

[20]

Yao Z.Y., Chini M., Aiello A., Benamati G. Hydrogen permeation through MANET II steel with hot dipping aluminized coating. J. Nucl. Sci. Eng., 2002, 22(1): 36.

[21]

Chen J.M., Qian J.F., Ma M., et al. The development of self-healing Al2O3 insulating coating. Surf. Technol., 2002, 31(1): 32.

[22]

Robertson J., Manning M.I. Limits to adherence of oxide scales. Mater. Sci. Technol., 1990, 6, 81.

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/