Simple method to rapidly fabricate chain-like carbon nanotube films and its field emission properties

Zhi-yuan Wu , Shuang-qi Hu , Zhi-qian Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (3) : 371 -375.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (3) : 371 -375. DOI: 10.1007/s12613-010-0320-x
Article

Simple method to rapidly fabricate chain-like carbon nanotube films and its field emission properties

Author information +
History +
PDF

Abstract

A simple process to fabricate chain-like carbon nanotube (CNT) films by microwave plasma-enhanced chemical vapor deposition (MPCVD) was developed successfully. Prior to deposition, the Ti/Al2O3 substrates were ground with Fe-doped SiO2 powder. The nano-structure of the deposited films was analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The field electron emission characteristics of the chain-like carbon nanotube films were measured under the vacuum of 10−5 Pa. The low turn-on field of 0.80 V/μm and the emission current density of 8.5 mA/cm2 at the electric field of 3.0 V/μm are obtained. Based on the above results, chain-like carbon nanotube films probably have important applications in cold cathode materials and electrode materials.

Keywords

carbon nanotube (CNT) / chain-like / film / microwave plasma-enhanced chemical vapor deposition (MPCVD) / field emission

Cite this article

Download citation ▾
Zhi-yuan Wu, Shuang-qi Hu, Zhi-qian Wang. Simple method to rapidly fabricate chain-like carbon nanotube films and its field emission properties. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(3): 371-375 DOI:10.1007/s12613-010-0320-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choi W.B., Chung D.S., Kang J.H., et al. Fully sealed high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett., 1999, 75(20): 3129.

[2]

Wei F., Huang C., Wang Y., et al. Fluidization of carbon nanotubes. China Particuol, 2005, 3(2): 40.

[3]

Heer W.A.D., Châtelain A., Ugarte D. A carbon nano-tube field-emission electron source. Science, 1995, 270(5239): 1179.

[4]

Dean K.A., Chalamala B.R. The environmental stability of field emission from single-walled carbon nanotubes. Appl. Phys. Lett., 1999, 75(19): 3017.

[5]

Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(2): 56.

[6]

Zimmer K., Böhme R., Ruthe D., et al. Stimulation of the local growth of aligned carbon nanotubes by pulse laser exposure of the substrate. Appl. Surf. Sci., 2007, 253(19): 7707.

[7]

Bonard J.M., Salvetat J.P., Stöckli T., et al. Field emission from carbon nanotubes: Perspectives for applications and clues to the emission mechanism. Appl. Phys. A, 1999, 69(3): 245.

[8]

Qin Y., Hu M. Effects of microwave plasma treatment on the field emission properties of printed carbon nanotubes/Ag nano-particles films. Appl. Surf. Sci., 2008, 254(6): 1757.

[9]

Wang Y.Y., Gupta S., Nemanichb R.J. Hollow to bamboo-like internal structure transition observed in carbon nanotube films. J. Appl. Phys., 2005, 98, 014312.

[10]

Saito Y. Nanoparticles and filled nanocapsules. Carbon, 1995, 33(7): 979.

[11]

Sumiya H., Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res., 2007, 22(8): 2345.

[12]

Meng X.M., Shang N.G., Lee C.S., et al. Fabrication and microstructures of Si composite nanocone arrays. Phys. Status Solidi A, 2005, 202(13): 2479.

[13]

Katayama T., Araki H., Yoshino K. Multiwalled carbon nanotubes with bamboo-like structure and effects of heat treatment. J. Appl. Phys., 2002, 91, 6675.

[14]

Chin K.C., Gohel A., Elim H.I., et al. Modified carbon nanotubes as broadband optical limiting nanomaterials. J. Mater. Res., 2006, 21(11): 2758.

[15]

Zhang W.D., Thong J.T.L., Tjiu W.C., et al. Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters. Diamond Relat. Mater., 2002, 11(9): 1638.

[16]

Kwo J.L., Tsou C.C., Yokoyama M., et al. Field emission characteristics of carbon nanotube emitters synthesized by arc discharge. J. Vac. Sci. Technol. B, 2001, 19(1): 23.

[17]

Ci L.J., Wei B.Q., Xu C.L., et al. Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Cryst. Growth, 2001, 233(2): 823.

[18]

T. Jeong, J. Heo, J. Lee, et al., Field emission from carbon nanotube emitters fabricated by the metal intermediation layer, J. Appl. Phys., 100(2006), No.6, art. No.064308.

[19]

A. Kumar, V.L. Pushparaj, S. Kar, et al., Contact transfer of aligned carbon nanotube arrays onto conducting substrates, Appl. Phys. Lett., 89(2006), No.6, art. No.163120.

[20]

Fan Z.Q., Zhang B.L., Yao N., et al. Carbon nanotube emitters and field emission triode. Chin. Phys. Lett., 2006, 4(5): 303.

[21]

Park D., Kim Y.H., Lee J.K. Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD. Carbon, 2003, 41(5): 1025.

[22]

Volodin A.A., Fursikov P.V., Kasumov Yu.A., et al. Synthesis of carbon nanostructures on the Fe-Mo catalysts supported on modified SiO2. Russ. Chem. Bull., 2006, 55(8): 1425.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/