Room temperature plastic deformation behavior of ZrCuNiAl bulk metallic glasses
Ping-jun Tao , Yuan-zheng Yang , Xiao-jun Bai , Zhi-wei Xie , Xian-chao Chen
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (3) : 327 -330.
Room temperature plastic deformation behavior of ZrCuNiAl bulk metallic glasses
The Zr62.55Cu17.55Ni9.9Al10 bulk metallic glass (BMG) was prepared by using copper-mold suction-casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal stability. Uniaxial compression and Rockwell indentation tests were adopted to study the plastic deformation behavior at room temperature. The results show that the glass transition temperature and the onset temperature of exothermic reaction of the BMG are 651.5 and 748 K, respectively. During the compression test, the BMGs undergo an engineering strain of about 2.5%, i.e., true strain of 2.8%, and then fracture. The BMGs deform via the formation and propagation of shear bands. Under indentation loading, the BMGs deform through the formation of radiation-like and circular shear bands. The circular shear bands form earlier than the radiation-like ones. The formation mechanism of shear bands in the BMGs was analyzed and discussed.
bulk metallic glass / plastic deformation / shear bands / compression / indentation
| [1] |
|
| [2] |
Y. Zhang and A.L. Greer, Thickness of shear bands in metallic glasses, Appl. Phys. Lett., 89(2006), No.7, art. No.071907. |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
H. Bei, S. Xie, and E.P. George, Softening caused by profuse shear banding in a bulk metallic glass, Phys. Rev. Lett., 96(2006), No.10, art. No.105503. |
| [14] |
|
| [15] |
K.F. Yao and C.Q. Zhang, Fe-based bulk metallic glass with high plasticity, Appl. Phys. Lett., 90(2007), No.6, art. No.0619001. |
| [16] |
X.J. Gu, A.G. Mcdermott, S.J. Poon, et al., Critical Poisson’s ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel, Appl. Phys. Lett., 88(2006), No.21, art. No.211905. |
/
| 〈 |
|
〉 |