Limitation of the Johnson-Mehl-Avrami equation for the kinetic analysis of crystallization in a Ti-based amorphous alloy

Jun Wang , Hong-chao Kou , Hui Chang , Xiao-feng Gu , Jin-shan Li , Hong Zhong , Lian Zhou

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (3) : 307 -311.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (3) : 307 -311. DOI: 10.1007/s12613-010-0309-5
Article

Limitation of the Johnson-Mehl-Avrami equation for the kinetic analysis of crystallization in a Ti-based amorphous alloy

Author information +
History +
PDF

Abstract

The primary crystallization of the Ti40Zr25Ni8Cu9Be18 amorphous alloy was studied by isochronal differential scanning calorimetry (DSC). The activation energy was determined by the Kissinger-Akahira-Sunose method. Trying to analyze the crystallization kinetics of the Ti40Zr25Ni8Cu9Be18 amorphous alloy by two different methods, it was found that the crystallization kinetics did not obey the Johnson-Mehl-Avrami equation. A modified method in consideration of the impingement effect was proposed to perform kinetic analysis of the isochronal crystallization of this alloy. The kinetic parameters were then obtained by the linear fitting method based on the modified kinetic equation. The results show that the isochronal crystallization kinetics of the amorphous Ti40Zr25Ni8Cu9Be18 alloy is heating rate dependent, and the discrepancy between the Johnson-Mehl-Avrami method and the modified method increases with the increase of heating rate.

Keywords

amorphous alloys / crystallization / kinetics / Johnson-Mehl-Avrami equation / impingement

Cite this article

Download citation ▾
Jun Wang, Hong-chao Kou, Hui Chang, Xiao-feng Gu, Jin-shan Li, Hong Zhong, Lian Zhou. Limitation of the Johnson-Mehl-Avrami equation for the kinetic analysis of crystallization in a Ti-based amorphous alloy. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(3): 307-311 DOI:10.1007/s12613-010-0309-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kelton K.F., Croat T.K., Gangopadhyay A.K., et al. Mechanisms for nanocrystal formations in metallic glasses. J. Non Cryst. Solids, 2003, 317(1–2): 71.

[2]

Zhuang Y.X., Wang W.H., Zhang Y., et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10−xFexBe22.5 bulk metallic glasses. Appl. Phys. Lett., 1999, 75(16): 2392.

[3]

Christan J.W. The Theory of Transformation in Metals and Alloys, 2002 Oxford, Pergamon Press, 529.

[4]

Wang X.D., Wang Q., Jiang J.Z. Avrami exponent and isothermal crystallization of Zr/Ti-based bulk metallic glasses. J. Alloys Compd., 2007, 440(1–2): 189.

[5]

Liu K.T., Duh J.G. Isothermal and non-isothermal crystallization kinetics in amorphous Ni45.6Ti49.3Al5.1 thin films. J. Non Cryst. Solids, 2008, 354(27): 3159.

[6]

Yan F., Zhu T., Zhao X., Dong S. A study of the crystallization kinetics of Ge-Te amorphous systems. J. Univ. Sci. Technol. Beijing, 2007, 14(Suppl.1): 64.

[7]

Yuan Z.Z., Chen X.D., Wang B.X., Wang Y.J. Kinetics study on non-isothermal crystallization of the metallic Co43Fe20Ta5.5B31.5 glass. J. Alloys Compd., 2006, 407(1–2): 163.

[8]

Liu F., Yang C.L., Yang G.C., Li J.S. Deviations from the classical Johnson-Mehl-Avrami kinetics. J. Alloys Compd., 2008, 460(1–2): 326.

[9]

Joraid A.A. Limitation of the Johnson-Mehl-Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim. Acta, 2005, 436(1–2): 78.

[10]

Huang L.J., Li L., Liang G.Y., et al. Crystallization kinetics of Mg65Cu25Nd10 amorphous alloy. J. Non Cryst. Solids, 2008, 354(10–11): 1048.

[11]

Todinov M.T. On some limitations of the Johnson-Mehl-Avrami-Kolmogorov equation. Acta Mater., 2000, 48(17): 4217.

[12]

Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim. Acta, 2000, 355(1–2): 239.

[13]

Lu W., Yang L., Yan B., Huang W.H. Nanocrystallization kinetics of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy. J. Alloys Compd., 2006, 420(1–2): 186.

[14]

Malek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta, 1995, 267, 61.

[15]

Sesták J., Tulíková M. Thermophysical Properties of Solids: Their Measurements and Theoretical Thermal Analysis, 1984 Amsterdam, Elsevier

[16]

Blazquez J.S., Conde C.F., Conde A. Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys. Acta Mater., 2005, 53(8): 2305.

[17]

Blazquez J.S., Conde C.F., Conde A., Kulik T. A direct extension of the Avrami equation to describe the non-isothermal crystallization of Al-base alloys. J. Alloys Compd., 2007, 434–435, 187.

[18]

Liu F., Yang C., Yang W., Yang G., Zhou Y. Application of an analytical phase transformation model. J. Univ. Sci. Technol. Beijing, 2007, 14(Suppl.1): 54.

[19]

Pradell T., Crespo D., Clavaguera N., Zhu J., Clavaguera-Mora M.T. Kinetics of microstructural development in nanocrystalline materials. Nanostrut. Mater., 1997, 8(3): 345.

[20]

Starink M. On the meaning of the impingement parameter in kinetic equations for nucleation and growth reactions. J. Mater. Sci., 2001, 36(18): 4433.

[21]

Kim Y.C., Kim W.T., Kim D.H. A development of Ti-based bulk metallic glass. Mater. Sci. Eng. A, 2004, 375–377, 127.

[22]

Starink M.J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta, 2003, 404(1–2): 163.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/