Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering

Ke Chu , Cheng-chang Jia , Xue-bing Liang , Hui Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 234 -240.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 234 -240. DOI: 10.1007/s12613-010-0220-0
Article

Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering

Author information +
History +
PDF

Abstract

Spark plasma sintering was used to fabricate Al/diamond composites. The effect of sintering temperature on the microstructure and thermal conductivity (TC) of the composites was investigated with the combination of experimental results and theoretical analysis. The composite sintered at 550°C shows high relative density and strong interfacial bonding, whereas the composites sintered at lower (520°C) and higher (580–600°C) temperatures indicate no interfacial bonding and poor interfacial bonding, respectively. High relative density and strong interfacial bonding can maximize the thermal conductivity of Al/diamond composites, and taking both effects of particle shape and inhomogeneous interfacial thermal conductance into consideration can give a fairly good prediction of composites’ thermal conduction properties.

Keywords

metal matrix composites / thermal properties / spark plasma / sintering; interface

Cite this article

Download citation ▾
Ke Chu, Cheng-chang Jia, Xue-bing Liang, Hui Chen. Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 234-240 DOI:10.1007/s12613-010-0220-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Q., Sun D. Recent achievements in research for electronic packaging substrate materials. J. Mater. Sci. Technol., 2000, 8, 66.

[2]

Robins M. Thermal management materials and design. Electron. Packag. Prod., 2000, 40, 50.

[3]

Ren S.B., He X.B., Qu X.H., et al. Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCP/Al composites. Compos. Sci. Technol., 2007, 67, 2103.

[4]

Zhang L., Qu X.H., Duan B.H., et al. Microstructure and thermo-mechanical properties of pressureless infiltrated SiCp/Cu composites. Compos. Sci. Technol., 2008, 68, 2731.

[5]

Yamamoto Y., Imai T., Tanabe K., et al. The measurement of thermal properties of diamond. Diamond Relat. Mater., 1997, 6, 1057.

[6]

Beffort O., Khalid F.A., Weber L., et al. Interface formation in infiltrated Al(Si)/diamond composites. Diamond Relat. Mater., 2006, 15, 1250.

[7]

Ruch P.W., Beffort O., Kleiner S., et al. Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity. Compos. Sci. Technol., 2006, 66, 2677.

[8]

Khalid F.A., Beffort O., Klotz U.E., et al. Microstructure and interfacial characteristics of aluminium-diamond composite materials. Diamond Relat. Mater., 2004, 13, 393.

[9]

Jia C.C., He Q., Meng J., Guo L.N. Influence of mechanical alloying time on the properties of Fe3Al intermetallics prepared by spark plasma sintering. J. Univ. Sci. Technol. Beijing, 2007, 14, 331.

[10]

Sun L., Lin C.G., Jia C.C., Jia X., Xian M. Change in relative density of WC-Co cemented carbides in spark plasma sintering process. Rare Met., 2008, 27, 74.

[11]

Liu K.G., Zhang J.X. Thermoelectrical properties of (FeNi)xCo4−xSb12 prepared by MA-SPS. J. Univ. Sci. Technol. Beijing, 2008, 15, 272.

[12]

Zhao P., Zhang B.P., Wang K., Zhang L.M., Zhang H.L. Effect of Li content on the microstructure and properties of lead-free piezoelectric (K0.5Na0.5)1−xLixNbO3 ceramics prepared by SPS. J. Univ. Sci. Technol. Beijing, 2008, 15, 314.

[13]

Bai L., Mao X.D., Shen W.P., Ge C.C. Comparative study of β-Si3N4 powders prepared by SHS sintered by spark plasma sintering and hot pressing. J. Univ. Sci. Technol. Beijing, 2007, 14, 271.

[14]

Yang M.J., Zhang D.M., Gu X.F., Zhang L.M. Effects of SiC particle size on CTEs of SiCp/Al composites by pulsed electric current sintering. Mater. Chem. Phys., 2006, 99, 170.

[15]

Davis L.C., Artz B.E. Thermal conductivity of metal matrix composites. J. Appl. Phys., 1995, 77, 4954.

[16]

Hasselman D.P.H., Lloyd F.J. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater., 1987, 21, 508.

[17]

Flaquer J., Ríos A., Martín-Meizoso A., et al. Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites. Comput. Mater. Sci., 2007, 41, 156.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/