Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4−zF z as cathode materials for lithium-ion batteries

Yan-bin Chen , Yang Hu , Fang Lian , Qing-guo Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 220 -224.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 220 -224. DOI: 10.1007/s12613-010-0217-8
Article

Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4−zF z as cathode materials for lithium-ion batteries

Author information +
History +
PDF

Abstract

Samples with the nominal stoichiometry Li1.05Cr0.1Mn1.9O4−zF z (z=0, 0.05, 0.1, 0.15, and 0.2) were synthesized via the solid-state reaction method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge/discharge, and slow rate cyclic voltammetry (SSCV) techniques. The results show that the pure spinel phase indexed to Fd3m can be obtained when z=0, 0.05, and 0.1. The substitution of F for O with z≤0.1 contributes to the increase of initial capacity compared with Li1.05Cr0.1Mn1.9O4 spinels. However, when the F-dopant content is designed to be 0.15 and 0.2, the Li1.05Cr0.1Mn1.9O4−zF z samples deliver relatively low capacity and poor cycling properties at 55°C.

Keywords

lithium-ion batteries / cathode materials / doping / electrochemical properties

Cite this article

Download citation ▾
Yan-bin Chen, Yang Hu, Fang Lian, Qing-guo Liu. Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4−zF z as cathode materials for lithium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 220-224 DOI:10.1007/s12613-010-0217-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Doi T., Yahiro T., Okada S., Yamaki J.I. Electrochemical insertion and extraction of lithium-ion at nano-sized LiMn2O4 particles prepared by a spray pyrolysis method. Electrochim. Acta, 2008, 53(27): 8064.

[2]

Gummow R.J., Kock A.D., Thackery M.M. Improved capacity retention in rechargeable 4V lithium/lithium manganese oxide (spinel) cells. Solid State Ionics, 1994, 69(1): 59.

[3]

Tarascon J.M., Mckinnon W.R., Coowar F., Bowmer T.N., Amatucci G., Guyomard D. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J. Electrochem. Soc., 1994, 141(6): 1421.

[4]

Xia Y., Yoshio M. Optimization of spinel Li1+xMn2−yO4 as a 4V Li-cell cathode in terms of Li-Mn-O phase diagram. J. Electrochem. Soc., 1997, 144(12): 4186.

[5]

Gao Y., Dahn J.R. The high temperature phase diagram of Li1+xMn2−xO4 and its implications. J. Electrochem. Soc., 1996, 143(6): 1783.

[6]

Aklalouch M., Amarilla J.M., Rojas R.M., Saadoune I., Rojo J.M. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode. J. Power Sources, 2008, 185(1): 501.

[7]

Zhang D., Popov B.N., White R.E. Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for Lithium ion batteries. J. Power Sources, 1998, 76(1): 81.

[8]

Robertson A.D., Lu S.H., Howard W.F. M3+-modified LiMn2O4 spinel intercalation cathodes II. Electrochemical stabilization by Cr3+. J. Electrochem. Soc., 1997, 144(10): 3505.

[9]

Deng B.H., Nakamura H., Yoshio M. Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures. J. Power Sources, 2008, 180(2): 864.

[10]

Thirunakaran R., Sivashanmugam A., Gopukumar S., Dunnill C.W., Gregory D.H. Studies on chromium/aluminium-doped manganese spinel as cathode materials for lithium-ion batteries—A novel chelated sol-gel synthesis. J. Mater. Process. Technol., 2008, 208(1-3): 520.

[11]

Thirunakaran R., Sivashanmugam A., Gopukumar S., Dunnill C.W., Gregory D.H. Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCrxMn2−xO4 (x=0.00–0.40) via sol-gel synthesis and its electrochemical behaviour for use in Li-ion-batteries. Mater. Res. Bull., 2008, 43(8–9): 2119.

[12]

G.G. Amatucci and N.J. Raritan, Lithium aluminum manganese oxyfluorides for Li-ion rechargeable battery electrodes, US patent, 5.759.720, 1998-06-02.

[13]

G.G. Amatucci and N.J. Raritan, Lithium magnesium manganese oxy-fluorides for Li ion rechargeable battery electrodes. US patent, 5.932.374, 1999-08-03.

[14]

Yamada A., Miura K., Hinokuma K., Tanaka M. Synthesis and structural aspects of LiMn2O4±δ as a cathode for rechargeable lithium batteries. J. Electrochem. Soc., 1995, 142(7): 2149.

[15]

Li T., Qiu W.H., Zhao H.L., Liu J.J. Electrochemical properties of spinel LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1 synthesized by solid-state reaction. J. Univ. Sci. Technol. Beijing, 2008, 15(2): 187.

[16]

Amatucci G.G., Pereira N., Zheng T., Pleitz I., Tarascon J.M. Enhancement of electrochemical properties of Li1Mn2O4 through chemical substitution. J. Power Sources, 1999, 81(81): 39.

[17]

Tarascon J.M., Wang E., Shokoohi F.K. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J. Electrochem. Soc., 1991, 138(81): 2859.

[18]

Guyomard D., Tarascon J.M. Li metal-free rechargeable LiMn2O4/carbon cells: their understanding and optimization. J. Electrochem. Soc., 1992, 139(4): 937.

[19]

Xia J.L., Zhao S.X., Liu H.X., Ouyang S.X. Study on the mechanism of influence on LiMn2O4 by F-dopant. J. Funct. Mater., 2004, 35(1): 74.

[20]

Ma S.H., Noguchi H., Yoshio M. Synthesis and electro-chemical studies on Li-Mn-O compounds prepared at high temperatures. J. Power Sources, 2004, 126(1–2): 144.

[21]

Chen Z.Y., Zhu H.L., Hu G.R., et al. Electrochemical performance and structure characteristic of LiMn2O4−xYx (Y=F, Cl, Br) compounds. Tans. Noferrous Met. Soc. China, 2004, 14(6): 1151.

[22]

Yao Y.C., Dai Y.N., Yang B., Ma W.H. Study on the synthesis and performance of F-Cr multiplex doped LiMn2O4. Battery Bimonthly, 2005, 35(6): 411.

[23]

Kang Y.J., Kim J.H., Sun Y.K. Structural and electrochemical study of Li-Al-Mn-O-F spinel material for lithium secondary batteries. J. Power Sources, 2005, 146(1-2): 237.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/