Strain rate response of a Zr-based composite fabricated by Bridgman solidification

Jun-wei Qiao , Yong Zhang , Ji-heng Li , Guo-liang Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 214 -219.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 214 -219. DOI: 10.1007/s12613-010-0216-9
Article

Strain rate response of a Zr-based composite fabricated by Bridgman solidification

Author information +
History +
PDF

Abstract

Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 bulk metallic glass matrix composites, containing β-Zr dendrites, were fabricated by Bridgman solidification at the withdrawal velocity of 1.0 mm/s through a temperature gradient of ∼45 K/mm. Subjected to the increasing compressive strain rates, the monotonic increasing and decreasing were obtained for the maximum strength and the fracture strain, respectively. The results show that high strain rate may induce the insufficient time for the interaction between shear bands and the crystalline phase, and early fracture occurs as a result. The fractographs are consistent with the mechanical properties, and the failure mode of the present Zr-based composites is in agreement with the frame of the ellipse criterion.

Keywords

bulk metallic glass / composites / Bridgman solidification / mechanical properties

Cite this article

Download citation ▾
Jun-wei Qiao, Yong Zhang, Ji-heng Li, Guo-liang Chen. Strain rate response of a Zr-based composite fabricated by Bridgman solidification. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 214-219 DOI:10.1007/s12613-010-0216-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peker A., Johnson W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett., 1993, 63(17): 2342.

[2]

Inoue A., Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans. JIM, 1996, 37(2): 185.

[3]

Y.L. Hao, S.J. Li, B.B. Sun, M.L. Sui, and R. Yang, Ductile titanium alloy with low Poisson’s ratio, Phys. Rev. Lett., 98(2007), No.21, art. No.216405.

[4]

Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No.18, art. No.181904.

[5]

Inoue A., Shen B.L., Koshiba H., Kato H., Yavari A.R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater., 2003, 2, 661.

[6]

Bian Z., He G., Chen G.L. Microstructure and mechanical properties of as-cast Zr52.5Cu17.9Ni14.6Al10Ti5 bulky glass alloy. Scripta Mater., 2000, 43(11): 1003.

[7]

Wang G.Y., Liaw P.K., Yokoyama Y., Peter W.H., Yang B., Freels M., Buchanan R.A., Liu C.T., Brooks C.R. Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses. J. Alloys Compd., 2007, 434–435, 68.

[8]

Hays C.C., Kim C.P., Johnson W.L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett., 2000, 84(13): 2901.

[9]

Fan C., Ott R.T., Hufnagel T.C. Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett., 2002, 81(6): 1020.

[10]

Hofmann D.C., Suh J.Y., Wiest A., Duan G., Lind M.L., Demetriou M.D., Johnson W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008, 451, 1085.

[11]

J.W. Qiao, S. Wang, Y. Zhang, P.K. Liaw, and G.L. Chen, Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification, Appl. Phys. Lett., 94(2009), No.15, art. No.151905.

[12]

Zhang Z.F., Eckert J., Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater., 2003, 51, 1167.

[13]

Schuh C.A., Nieh T.G. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater., 2003, 51, 87.

[14]

F.H. Dalla Torre, A. Dubach, M.E. Siegrist, and J.F. Löffler, Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation, Appl. Phys. Lett., 89(2006), No.9, art. No.091918.

[15]

Tan H., Zhang Y., Ma D., Feng Y.P., Li Y. Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu, Ni) pseudo ternary system. Acta Mater., 2003, 51, 4551.

[16]

Tan H., Zhang Y., Hu X., Feng Y.P., Li Y. Synthesis of in situ bulk glass matrix composite by Bridgman method. Mater. Sci. Eng. A, 2004, 375–377, 407.

[17]

Zhang Y., Xu W., Tan H., Li Y. Microstructure control and ductility improvement of La-Al-(Cu, Ni) composites by Bridgman solidification. Acta Mater., 2005, 53, 2607.

[18]

Qiao J.W., Zhang Y., Liaw P.K. Tailoring microstructures and mechanical properties of Zr-based bulk metallic glass matrix composites by the Bridgman solidification. Adv. Eng. Mater., 2008, 10(11): 1039.

[19]

Zhang J., Park J.M., Kim D.H., Kim H.S. Effect of strain rate on compressive behavior of Ti45Zr16Ni9Cu10Be20 bulk metallic glass. Mater. Sci. Eng. A, 2007, 449–451, 290.

[20]

W.H. Jiang, F.X. Liu, P.K. Liaw, and H. Choo, Shear strain in a shear band of a bulk metallic glass in compression, Appl. Phys. Lett., 90(2007), No.18, art. No.181903.

[21]

Wang G., Chan K.C., Xia L., Yu P., Shen J., Wang W.H. Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater., 2009, 57, 6146.

[22]

Song S.X., Bei H., Wadsworth J., Nieh T.G. Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics, 2008, 16, 813.

[23]

Lowhapandu P., Montgomery S.L., Lewandowki J.J. Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy. Scripta Mater., 1999, 41(1): 19.

[24]

Zhang H.W., Maiti S., Subhash G. Evolution of shear bands in bulk metallic glasses under dynamic loading. J. Mech. Phys. Solids, 2008, 56, 2171.

[25]

Qiao J.W., Zhang Y., Liaw P.K., Chen G.L. Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite. Scripta Mater., 2009, 61, 1087.

[26]

Zhang Z.F., Eckert J. Unified tensile fracture criterion. Phys. Rev. Lett., 2005, 94(9): 09430.

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/