Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys

Uǧur Sari

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 192 -198.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 192 -198. DOI: 10.1007/s12613-010-0212-0
Article

Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys

Author information +
History +
PDF

Abstract

The influences of 2.5wt% Mn addition on the microstructure and mechanical properties of the Cu-11.9wt%Al-3.8wt%Ni shape memory alloy (SMA) were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimeter (DSC). The experimental results show that Mn addition influences considerably the austenite-martensite transformation temperatures and the kind of martensite in the Cu-Al-Ni alloy. The martensitic transformation changes from a mixed xed β1→β′1+γ′1 transformation to a single β1→β′1 martensite transformation together with a decrease in transformation temperatures. In addition, the observations reveal that the grain size of the Cu-Al-Ni alloy can be controlled with the addition of 2.5wt% Mn and thus its mechanical properties can be enhanced. The Cu-Al-Ni-Mn alloy exhibits better mechanical properties with the high ultimate compression strength and ductility of 952 MPa and 15%, respectively. These improvements are attributed to a decrease in grain size. However, the hardness decreases from Hv 230 to Hv 140 with the Mn addition.

Keywords

Cu-Al-Ni shape memory alloys / martensitic transformations / grain size / mechanical properties

Cite this article

Download citation ▾
Uǧur Sari. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 192-198 DOI:10.1007/s12613-010-0212-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Perez-Landazabal J.I., Recarte V., Sanches-Alarcos V., No M.L., Juan S.J. Study of the stability and decomposition process of the β phase in Cu-Al-Ni shape memory alloys. Mater. Sci. Eng. A, 2006, 438–440, 734.

[2]

Zak G., Kneissl A.C., Zatulskij G. Shape memory effect in cryogenic Cu-Al-Mn alloys. Scripta Mater., 1996, 34, 363.

[3]

Otsuka K., Wayman C.M. Shape Memory Materials, 1998 Cambridge, Cambridge University Press, 98.

[4]

Miyazaki S., Otsuka K. Development of shape memory alloys. ISIJ Int., 1989, 29, 353.

[5]

Saburi T., Wayman C.M. Crystallographic similarities in shape memory martensites. Acta Metall., 1979, 27, 979.

[6]

Sugimoto S., Sakamoto H., Hara T., Tsuchiya H. The effect of grain constraint, heat treatment and compositional change on the behavior of martensitic transformations in alloys with the composition near Cu-13Al-4Ni-1Zn (mass%). J. Phys. IV, 1995, 5, 925.

[7]

Recarte V., Perez-Saez R.B., Bocanegra E.H., No M.L., San Juan J. Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni shape-memory alloys. Metall. Mater. Trans. A, 2002, 33, 2581.

[8]

Sarı U., Aksoy Electron microscopy study of 2H and 18R martensites in Cu-11.92wt% Al-3.78wt% Ni shape memory alloy. J. Alloys Compd., 2006, 417, 138.

[9]

Wei Z.G., Peng H.Y., Yang D.Z., Chung C.Y., Lai J.K.L. Reverse transformations in CuAlNiMnTi alloy at elevated temperatures. Acta Mater., 1996, 44, 1189.

[10]

Sutou Y., Omori T., Yamauchi K., Ono N., Kainuma R., Ishida K. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater., 2005, 53, 4121.

[11]

Morris M.A. Influence of boron additions on ductility and microstructure of shape memory Cu-Al-Ni alloys. Scripta. Metall. Mater., 1991, 25, 2541.

[12]

Morris M.A. High temperature properties of ductile Cu-Al-Ni shape memory alloys with boron additions. Acta Metall. Mater., 1992, 40, 1573.

[13]

Morris M.A., Lipe T. Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu-Al-Ni alloys. Acta Metall. Mater., 1994, 42, 1583.

[14]

Sarı U., Kırındı T. Effects of deformation on microstructure and mechanical properties of a Cu-Al-Ni shape memory alloy. Mater. Charact., 2008, 59, 920.

[15]

Adachi K., Shoji K., Hamada Y. Formation of X phases shape memory alloys and origin of grain refinement added with titanium effect in Cu-Al-Ni. ISIJ Int., 1989, 29, 378.

[16]

Funakubo H. Kennedy J.B. Shape Memory Alloys, 1987 New York, Gordon and Breach Science Publishers, 154.

[17]

Gama J.L.L., Dantas C.C., Quadros N.F., Ferreira R.A.S., Yadava Y.P. Microstructure-mechanical property relationship to copper alloys with shape memory during thermomechanical treatments. Metall. Mater. Trans. A, 2006, 37, 77.

[18]

Sarı U., Aksoy Micro-structural analysis of self-accommodating martensites in Cu-11.92wt% Al-3.78wt% Ni shape memory alloy. J. Mater. Process. Technol., 2008, 195, 72.

[19]

Malimanek J., Zarubova N. Calorimetric investigation of the movement of phase interfaces in a Cu-Al-Ni single crystal. Scripta Metall. Mater., 1995, 32, 1347.

[20]

Suresh N., Ramamurty U. Effect of aging on mechanical behavior of single crystal Cu-Al-Ni shape memory alloys. Mater. Sci. Eng. A, 2007, 454–455, 492.

[21]

Sakamoto H., Shimizu K. Effect of heat treatments on thermally formed martensite phases in monocrystalline Cu-Al-Ni shape memory alloy. ISIJ Int., 1989, 29, 395.

[22]

Montecinos S., Cuniberti A., Sepulveda A. Grain size and pseudoelastic behaviour of a Cu-Al-Be alloy. Mater. Charact., 2008, 59, 117.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/