Hot deformation behavior of Super304H austenitic heat resistant steel

Shu-ping Tan , Zhen-hua Wang , Shi-chang Cheng , Zheng-dong Liu , Jie-cai Han , Wan-tang Fu

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 167 -172.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (2) : 167 -172. DOI: 10.1007/s12613-010-0208-9
Article

Hot deformation behavior of Super304H austenitic heat resistant steel

Author information +
History +
PDF

Abstract

The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800–1200°C and 0.005–5 s−1 using a Gleeble 3500 thermal-mechanical simulator, and its deformation behavior was analyzed. The results show that the flow stress of Super304H steel decreases with the decrease of strain rate and the increase of deformation temperature; the hot deformation activation energy of the steel is 485 kJ/mol. The hot deformation equation and the relationship between the peak stress and the deformation temperature and strain rate is obtained. The softening caused by deformation heating cannot be neglected when both the deformation temperature and strain rate are higher.

Keywords

austenitic steel / heat resistant / hot deformation / flow stress / dynamic recrystallization

Cite this article

Download citation ▾
Shu-ping Tan, Zhen-hua Wang, Shi-chang Cheng, Zheng-dong Liu, Jie-cai Han, Wan-tang Fu. Hot deformation behavior of Super304H austenitic heat resistant steel. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 167-172 DOI:10.1007/s12613-010-0208-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun Y.M., Zou X.P. The comment of super304H stainless steel boiler tube. Boiler Technol., 2007, 38(1): 52.

[2]

Zhu P., Zhao J.C., Chai X.Y., et al. Research on the matching of super304H austenitic stainless steel welding material and the connector performance. Electr. Equip., 2007, 8(4): 43.

[3]

X.D. Fang, H.J. Wang, X.Q. Tian, et al., Exploitation of S30432 austenitic heat resistant steel tube used for 1000MW ultra supercritical unit boiler, Taigang Technol. (in Chinese), 2007, No.2, p.22.

[4]

Sun Y.M., Pan Q.G., Liu Z.Y., et al. Welding procedure test research of super304H steel. Dongfang Electr. Rev., 2004, 18(2): 82.

[5]

Yang Y., Cheng S.C., Yang G. Effect of Cu addition on the creep rupture properties of super304H steel. Mater. Mech. Eng., 2002, 26(10): 23.

[6]

Sun Y.Z. Properties of material Super304H used for ESC boilers. Electr. Power Constr., 2003, 24(9): 11.

[7]

Guo F.Q., Cheng S.C., Liu Z.D., et al. Effect of carbon and niobium on intergranular corrosion of ASME S30432 austenite heat resistant steel. Mater. Mech. Eng., 2007, 31(8): 11.

[8]

Jonas J.J., Sellars C.M., Tegart W.J. Strength and structure under hot working conditions. Metall. Rev., 1969, 14(14): 1.

[9]

Rao K.P., Hawbolt E.B. Development of constitutive relationships using compression testing of a medium carbon steel. ASME J. Eng. Mater. Technol., 1992, 114(3): 116.

[10]

Zener C., Hollomon J.H. Effect of strain rate upon the plastic of steel. J. Appl. Phys., 1944, 15(1): 22.

[11]

Lu Y.H., Fu R.D., Qiu L., et al. Deformation behavior of nitrogen strengthened high manganese austenitic steel. Trans. Mater. Heat Treat., 2007, 28(2): 69.

[12]

Medina S.F., Hernandez C.A. General expression of Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloy steels. Acta Mater., 1996, 44, 137.

[13]

Imbert C., Ryan N.D., McQueen H.J. Hot workability of three grade of tool steel. Metall. Trans. A, 1984, 15(10): 1855.

[14]

Milovic R., Manojlovic D., Andjelic M., et al. Hot workability of M2 type high-speed steel. Steel Res., 1992, 63(2): 78.

[15]

Devadas C., Baragar D., Ruddle G., et al. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads. Metall. Trans. A, 1991, 22, 321.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/