Effect of SiO2 addition on the microstructure and electrical properties of ZnO-based varistors

Zhen-hong Wu , Jian-hui Fang , Dong Xu , Qin-dong Zhong , Li-yi Shi

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (1) : 86 -91.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (1) : 86 -91. DOI: 10.1007/s12613-010-0115-0
Article

Effect of SiO2 addition on the microstructure and electrical properties of ZnO-based varistors

Author information +
History +
PDF

Abstract

The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0–1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, inductively coupled plasma-atomic emission spectrometry, and X-ray photoelectron spectroscopy. The results indicate that the average grain size of ZnO decreases with the SiO2 content increasing. A new second phase (Zn2SiO4) and a glass phase (Bi2SiO5) are found. Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi2O3 vaporization. The electric measurement shows that the incorporation of SiO2 can significantly improve the nonlinear properties of ZnO-based varistors, and the nonlinear coefficients of the varistors with SiO2 are in the range of 36.8–69.5. The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μA at the SiO2 content of 0.75mol%.

Keywords

inorganic materials / varistor / silicon dioxide / electrical properties

Cite this article

Download citation ▾
Zhen-hong Wu, Jian-hui Fang, Dong Xu, Qin-dong Zhong, Li-yi Shi. Effect of SiO2 addition on the microstructure and electrical properties of ZnO-based varistors. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 86-91 DOI:10.1007/s12613-010-0115-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clarke D.R. Varistor ceramics. J. Am. Ceram. Soc., 1999, 82, 485.

[2]

Xu D., Shi L., Wu Z., et al. Microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics by different sintering processes. J. Eur. Ceram. Soc., 2009, 29, 1789.

[3]

Matsuoka M. Nonohmic properties of zinc oxide ceramics. Jpn. J. Appl. Phys., 1971, 10, 736.

[4]

Gupta T.K. Applications of zinc oxide ceramics. J. Am. Ceram. Soc., 1990, 73, 1817.

[5]

Takemura T., Kobayashi M., Takada Y., Sato K. Effects of antimony oxide on the characteristics of ZnO varistors. J. Am. Ceram. Soc., 1987, 70, 237.

[6]

Olsson E., Dunlop G.L. The effect of Bi2O3 content on the microstructure and electrical properties of ZnO varistor materials. J. Appl. Phys., 1989, 66, 4317.

[7]

Peiteado M., De M.A., Velasco M.J., et al. Bi2O3 vaporization from ZnO-based varistors. J. Eur. Ceram. Soc., 2005, 25, 675.

[8]

Lin C.C., Lee W.S., Sun C.C., Whu W.H. The influences of bismuth antimony additives and cobalt manganese dopants on the electrical properties of ZnO-based varistors. Compos. Part B, 2007, 38, 338.

[9]

Cho S.G., Lee H., Kim H.S. Effect of chromium on the phase evolution and microstructure of ZnO doped with bismuth and antimony. J. Mater. Sci., 1997, 32, 4283.

[10]

Magnusson K.O., Wiklund S. Interface formation of Bi on ceramic ZnO: a simple model varistor grain boundary. J. Appl. Phys., 1994, 76, 7405.

[11]

Bernik S., Daneu N. Characteristics of ZnO-based varistor ceramics doped with Al2O3. J. Eur. Ceram. Soc., 2007, 27, 3161.

[12]

Ott J., Lorenz A., Harrer M., et al. The influence of Bi2O3 and Sb2O3 on the electrical properties of ZnO-based varistors. J. Electroceram., 2001, 6, 135.

[13]

Lin C., Xu Z., Hu P., Sun D.F. Bi2O3 vaporization in microwave-sintered ZnO varistors. J. Am. Ceram. Soc., 2007, 90, 2791.

[14]

Einzinger R. Metal oxide varistors. Ann. Rev. Mater. Sci., 1987, 17, 299.

[15]

Kutty T.R.N., Ezhilvalavan S. The role of silica in enhancing the nonlinearity coefficients by modifying the trap states of zinc oxide ceramic varistors. J. Phys. D, 1996, 29, 809.

[16]

So S.J., Park C.B. Improvement in the electrical stability of semiconducting ZnO ceramic varistors with SiO2 additive. J. Korean Phys. Soc., 2002, 40, 925.

[17]

Nahm C.W. Effect of cooling rate on degradation characteristics of ZnO·Pr6O11·CoO·Cr2O3·Y2O3-based varistors. Solid State Commun., 2004, 132, 213.

[18]

Haskell B.A., Souri S.J., Helfand M.A. Varistor behavior at twin boundaries in ZnO. J. Am. Ceram. Soc., 1999, 82, 2106.

[19]

Rečnik A., Daneu N., Walther T., Mader W. Structure and chemistry of basal-plane inversion boundaries in antimony oxide doped zinc oxide. J. Am. Ceram. Soc., 2001, 84, 2657.

[20]

Bernik S., Daneu N., Rečnik A. Inversion boundary induced grain growth in TiO2 or Sb2O3 doped ZnO-based varistor ceramics. J. Eur. Ceram. Soc., 2004, 24, 3703.

[21]

Ye C.N., Tang N.Y., Wu X.M., et al. XPS analysis of Ge-SiO2 thin film. Microfabr. Technol., 2002, 1, 36.

[22]

Nahm C.W. The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors. Mater. Sci. Eng. B, 2007, 136, 134.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/