Mechanical properties of electroformed copper layers with gradient microstructure

Qiang Liao , Li-qun Zhu , Hui-cong Liu , Wei-ping Li

International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (1) : 69 -74.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2010, Vol. 17 ›› Issue (1) : 69 -74. DOI: 10.1007/s12613-010-0112-3
Article

Mechanical properties of electroformed copper layers with gradient microstructure

Author information +
History +
PDF

Abstract

The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker’s hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstructure are significantly improved in comparison with the pure copper deposit.

Keywords

electroforming / copper layer / gradient microstructure / mechanical properties / preferred orientation

Cite this article

Download citation ▾
Qiang Liao, Li-qun Zhu, Hui-cong Liu, Wei-ping Li. Mechanical properties of electroformed copper layers with gradient microstructure. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 69-74 DOI:10.1007/s12613-010-0112-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sinnoma S., Hiraitosio T., Watanabe R. Functionally gradient materials. J. Compos. Mater. Jpn., 1987, 13(1): 257.

[2]

Blondiaux N., Morgenthaler S., Pugin R., et al. Gradients of topographical structure in thin polymer films. Appl. Surf. Sci., 2008, 254(21): 6820.

[3]

Li W.X., Zhang G., Lai Y.Q., et al. Functionally gradient materials: status and future directions. Mater. Rev., 2003, 17(S1): 222.

[4]

Wong K.P., Chan K.C., Yue T.M. Influence of spike current in different shaped waveforms on the hardness and grain size of nickel electroforms. J. Mater. Process. Technol., 2001, 117(1–2): 97.

[5]

Lei W.N., Zhu D., Qu N.S. Research on mechanical properties of nanocrystalline electroforming layer. Chin. J. Mech. Eng., 2004, 40(12): 126.

[6]

Zhao H.J., Liu L., Wu Y.T., et al. Investigation on wear and corrosion behavior of Cu-graphite composites prepared by electroforming. Compos. Sci. Technol., 2007, 67(6): 1210.

[7]

Zhu J.H., Liu L., Hu G.H., et al. Study on composite electroforming of Cu/Sip composites. Mater. Lett., 2004, 58(10): 1634.

[8]

Tohru W. Nano-plating, 2007 Beijing, The Chemical Industry Press, 7.

[9]

Kinji T., Kazuhiko H., Hideo M. Effect of micro texture of electroplated copper thin films on their mechanical properties. J. Mater. Sci. Jpn., 2007, 56(10): 907.

[10]

Qin L.Y., Xu J.Y., Lian J.S., et al. A novel electrodeposited nanostructured Ni coating with grain size gradient distribution. Surf. Coat. Technol., 2008, 203(1–2): 142.

[11]

Gilhooley D.F., Xiao J.R., Batra R.C., et al. Two-dimensional stress analysis of functionally graded solids using the MLPG method with radial basis functions. Comput. Mater. Sci., 2008, 41(4): 467.

[12]

Choi I.S., Detor A.J., Schwaiger R., et al. Mechanics of indentation of plastically graded materials-II: Experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids, 2008, 56(1): 172.

[13]

Bhattacharyya M., Kumar A.N., Kapuria S. Synthesis and characterization of Al/SiC and Ni/Al2O3 functionally graded materials. Mater. Sci. Eng. A, 2008, 487(1–2): 524.

[14]

Hou F.Y., Wang W., Guo H.T. Effect of the dispersibility of ZrO2 nanoparticles in Ni-ZrO2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings. Appl. Surf. Sci., 2006, 252(10): 3812.

[15]

Li J., Dai C.S., Wang D.L., et al. Electroforming of nickel and partially stabilized zirconia (Ni+PSZ) gradient coating. Surf. Coat. Technol., 1997, 91(1–2): 131.

[16]

Zhang W.F., Zhu D. Study on preparation of Ni-ZrO2 nano-functional gradient ma terial based on pulse electroforming. J. Synth. Cryst., 2006, 35(5): 1090.

[17]

Zheng H.Y., An M.Z., Lu J.F. Surface characterization of the Zn-Ni-Al2O3 nanocomposite coating fabricated under ultrasound condition. Appl. Surf. Sci., 2008, 254(6): 1644.

[18]

Huang S.T. The X-ray Study for Solid State, 1985 Beijing, Higher Education Press, 85.

[19]

Michael E.H., Richard G.C. How ultrasound influences the electrodeposition of metals. J. Electroanal. Chem., 2002, 531(1): 19.

[20]

Xia F.F., Wu M.H., Wang F., et al. Nanocomposite Ni-TiN coatings prepared by ultrasonic electrodeposition. Curr. Appl. Phys., 2009, 9(1): 44.

[21]

Chang L.M., Guo H.F., An M.Z. Electrodeposition of Ni-Co/Al2O3 composite coating by pulse reverse method under ultrasonic condition. Mater. Lett., 2008, 62(19): 3313.

[22]

Li Y.L., Feng H.K., Cao F.R., et al. Effect of high density ultrasonic on the microstructure and refining property of Al-5Ti-0.25C grain refiner alloy. Mater. Sci. Eng. A, 2008, 487(1–2): 518.

[23]

Liu Z.C. The Transformation Mechanism of Material’s Structure, 2006 Beijing, Metallurgical Industry Press, 33.

[24]

Gu M., Yang F.Z., Huang L. XRD study on highly preferred orientation Cu elect rodeposit. Electrochemistry, 2002, 8(3): 282.

[25]

Hall E.O. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B, 1951, 64(9): 747.

[26]

Petch N.J. The cleavage strength of crystals. J. Iron Steel Inst., 1953, 74(1): 25.

[27]

Dong W., Zhang J., Zheng J.W., et al. Self-annealing of electrodeposited copper thin film during room temperature storage. Mater. Lett., 2008, 62(10–11): 1589.

[28]

Zhong Q.P., Zhao Z.H. Fractography, 2006 Beijing, Higher Education Press, 267.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/