Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk

Gema Velásquez-Espinoza, Irasema Alcántara-Ayala

International Journal of Disaster Risk Science ›› 2024, Vol. 15 ›› Issue (4) : 579-593. DOI: 10.1007/s13753-024-00581-7
Article

Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk

Author information +
History +

Abstract

In tropical regions such as Nicaragua, the population’s vulnerability to hazards has escalated in recent decades. This increase in vulnerability has led to a surge in disasters, particularly those triggered by intense hurricanes. The implications at the national level are still poorly understood. The aim of this article has, therefore, been two-fold. First, to present a historical review of the direct effects of tropical cyclones on society in Nicaragua from 1852 to 2020. Second, to analyze the statistical probabilities of future hurricane-spawned high winds over Nicaragua. Data on cyclones hitting Nicaragua’s coasts were collected, including direct effects, wind speed, pressure, category, direction, and time of landfall. A database was created to classify intensity based on wind speed and frequency. Between 1852 and 2020, Nicaragua experienced 58 tropical cyclones with varying degrees of intensity between September and November. The trajectories of six past hurricanes were considered here regarding the areas that might have been under potential threat. Three zones of influence were delimited along each trajectory according to three wind intensities and the trajectory of these hurricanes. The consequent exposure of each Nicaraguan department and autonomous region was established. The findings are essential to delimitating priority areas for attention regarding the likely impact of tropical cyclones, mainly category 4 and 5 hurricanes. Public officials and the general public can use these data to identify the pressing need for enhanced strategies to mitigate disaster risk and avoid potential disasters.

Keywords

Exposure / Historical impact / Hurricanes / Nicaragua / Tropical cyclones / Vulnerability

Cite this article

Download citation ▾
Gema Velásquez-Espinoza, Irasema Alcántara-Ayala. Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk. International Journal of Disaster Risk Science, 2024, 15(4): 579‒593 https://doi.org/10.1007/s13753-024-00581-7

References

[]
Alcántara-Ayala, I., I. Burton, A. Lavell, A. Oliver-Smith, A. Brenes, and T. Dickinson. 2023. Forensic investigations of disasters: Past achievements and new directions. Jàmbá: Journal of Disaster Risk Studies 15(1): Article 11.
[]
Alcántara-Ayala I, Gomez C, Chmutina K, van Niekerk D, Raju E, Marchezini V, Cadag JR, Gaillard JC. . Disaster risk, 2023 London Taylor & Francis
[]
Baumeister, E. 2006. International migration and development in Nicaragua (Migración internacional y desarrollo en Nicaragua). Santiago, Chile: CEPAL. https://www.ecampus.iom.int/pluginfile.php/10818/block_html/content/Nicaragua%20.pdf. Accessed 4 Mar 2024 (in Spanish).
[]
Betanco, B. 1979. Demographic analysis of Nicaragua (Análisis demográfico de Nicaragua). Master’s thesis. El colegio de México, Centro de Estudios Económicos y Demográficos, Managua, Nicaragua (in Spanish).
[]
Blaikie P, Cannon T, Davis ID, Wisner B. . At risk: Natural hazards, people’s vulnerability and disasters, 1994 London Routledge
[]
Bro, A.S. 2020. Climate change adaptation, food security, and attitudes toward risk among smallholder coffee farmers in Nicaragua. Sustainability 12(17): Article 6946.
[]
Busso, G. 2002. Sociodemographic vulnerability in Nicaragua: A challenge for economic growth and poverty reduction (Vulnerabilidad sociodemográfica en Nicaragua: un desafío para el crecimiento económico y la reducción de la pobreza). https://hdl.handle.net/11362/7167. Accessed 4 Nov 2023.
[]
Cai W, Santoso A, Collins M, Dewitte B, Karamperidou C, Kug JS, Lengaigne M, McPhaden MJ, et al.. Changing El Niño-Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2(9): 628-644,
CrossRef Google scholar
[]
Callahan CW, Chen C, Rugenstein M, Bloch-Johnson J, Yang S, Moyer EJ. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nature Climate Change, 2021, 11(9): 752-757,
CrossRef Google scholar
[]
CCRIF (The Caribbean Catastrophe Risk Insurance Facility). 2017. Tropical Cyclone Nate (AL162017) wind and storm surge preliminary event report Nicaragua October 8, 2017 (Ciclón Tropical Nate (AL162017) Viento e Incremento de Marea Reporte Preliminar del Evento Nicaragua 8 de octubre de 2017). https://www.ccrif.org/sites/default/files/publications/eventreports/20171005_CCRIF_EventBriefing_TC-Nate_20171007_NIC_Final_Spanish.pdf. Accessed 23 Oct 2023 (in Spanish).
[]
Central America/Caribbean landfall probability calculations. n.d. https://ininet.org/central-americacaribbean-landfall-probability-calculations.html. Accessed 10 Aug 2023.
[]
CEPAL-BID. 2007. Information for disaster risk management (Información para la gestión de Riesgo de Desastres). Nicaragua: Estudio de caso de cinco países. https://repositorio.cepal.org/server/api/core/bitstreams/cff3c4fd-eb97-46c2-8570-119e34d30803/content. Accessed 10 Aug 2023 (in Spanish).
[]
Consorcio ERN América Latina. n.d. Probabilistic analysis of natural hazards and risks (Análisis Probabilista de Amenazas y Riesgos Naturales). Volume III. Review of important historical events (Revisión de eventos históricos importantes). Technical Report ERN-CAPRA-T2-1. https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R7-T2-1%20-%20Eventos%20Hist%C3%B3ricos%20Importantes%20NIC.pdf. Accessed 3 Sept 2023 (in Spanish).
[]
DesInventar database. n.d. Web page. https://www.desinventar.net/. Accessed 1 Mar 2024.
[]
Ebi KL, Vanos J, Baldwin JW, Bell JE, Hondula DM, Errett NA, Hayes K, Reid CE, et al.. Extreme weather and climate change: Population health and health system implications. Annual Review of Public Health, 2021, 42(1): 293-315,
CrossRef Google scholar
[]
Elsner JB, Kossin JP, Jagger TH. The increasing intensity of the strongest tropical cyclones. Nature, 2008, 455(7209): 92-95,
CrossRef Google scholar
[]
Fernández-Partagás J, Diaz HF. Atlantic hurricanes in the second half of the nineteenth century. Bulletin of the American Meteorological Society, 1996, 77(12): 2899-2906,
CrossRef Google scholar
[]
Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM. The recent increase in Atlantic hurricane activity: Causes and implications. Science, 2001, 293(5529): 474-479,
CrossRef Google scholar
[]
Gray, W. 1984. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Monthly Weather Review 112(9): 1649–1668.
[]
Hsiang SM. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proceedings of the National Academy of Sciences, 2010, 107(35): 15367-15372,
CrossRef Google scholar
[]
Incer, J., J. Wheelock, L. Cardenal, and A. Rodríguez. 2000. Natural disasters of Nicaragua: A guide to understand and prevent them (Desastres naturales de Nicaragua. Guía para conocerlos y prevenirlos). Managua, Nicaragua: Hispamer (in Spanish).
[]
INEC (Instituto Nacional de Estadísticas y Censo). 1975. Población volume III. Características Económicas. National census 1971 (Censo Nacionales 1971). Nicaragua: Población por Municipio (in Spanish).
[]
INEC (Instituto Nacional de Estadísticas y Censo). 1995. National Census 1995: Population, housing, agricultural module (Censos Nacionales 1995: Población, Vivienda, Modulo Agropecuario). Buenos Aires, Argentina: INEC (in Spanish).
[]
INETER (Instituto Nicaragüense de Estudios Territoriales). 1964–2020. Annual meteorological summary, precipitation (mm) (Resumen metrológico anual, precipitación (mm)). Managua, Nicaragua: INETER (in Spanish).
[]
INETER (Instituto Nicaragüense de Estudios Territoriales). 1998. Rains of the century in Nicaragua (Las lluvias del siglo en Nicaragua). Managua, Nicaragua: INETER (in Spanish).
[]
INIDE (Instituto Nacional de Información de Desarrollo). 2007. Statistical yearbook 2007 (Anuario Estadístico 2007). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
[]
INIDE (Instituto Nacional de Información de Desarrollo). 2019. Statistical yearbook 2019 (Anuario Estadístico 2019). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
[]
INIDE (Instituto Nacional de Información de Desarrollo). 2021. Statistical yearbook 2019 (Anuario Estadístico 2019). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
[]
IPCC (Intergovernmental Panel on Climate Change). 2022. Climate change 2022: Impacts, adaptation and vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/. Accessed 22 Oct 2023.
[]
IPCC (Intergovernmental Panel on Climate Change). 2023. AR6 synthesis report: Climate change. https://www.ipcc.ch/report/ar6/syr/. Accessed 22 Oct 2023.
[]
Kaplan J, DeMaria M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. Journal of Applied Meteorology and Climatology, 1995, 34(11): 2499-2512,
CrossRef Google scholar
[]
Klotzbach, P.J., and W. Gray. 2005. United States landfall probability webpage. http://hurricanepredictor.com/Methodology/USmethodology.pdf. Accessed 24 Jul 2023.
[]
Klotzbach, P.J., K.M. Wood, C.J. Schreck III, S.G. Bowen, C.M. Patricola, and M.M. Bell. 2022. Trends in global tropical cyclone activity: 1990–2021. Geophysical Research Letters 49(6): Article e2021GL095774.
[]
Knaff JA. Implications of summertime sea level pressure anomalies in the tropical Atlantic region. Journal of Climate, 1997, 10(4): 789-804,
CrossRef Google scholar
[]
Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, et al.. Tropical cyclones and climate change. Nature Geoscience, 2010, 3(3): 157-163,
CrossRef Google scholar
[]
Kossin JP, Knapp KR, Olander TL, Velden CS. Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences, 2020, 117(22): 11975-11980,
CrossRef Google scholar
[]
Kruk MC, Gibney EJ, Levinson DH, Squires MF. A climatology of inland winds from tropical cyclones for the eastern United States. Journal of Applied Meteorology and Climatology, 2010, 49(7): 1538-1547,
CrossRef Google scholar
[]
Landsea CW, Franklin JL. Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review, 2013, 141(10): 3576-3592,
CrossRef Google scholar
[]
Lau, Y.-Y., T.-L. Yip, M.A. Dulebents, Y.-M. Tang, and T.A. Kawasaki. 2022. A review of historical changes of tropical and extra-tropical cyclones: A comparative analysis of the United States, Europe, and Asia. International Journal of Environmental Research and Public Health 19(8): Article 4499.
[]
Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, Muir-Wood R, Myeong S, et al.. Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, et al.. Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change, 2012 Cambridge, UK Cambridge University Press 25-64,
CrossRef Google scholar
[]
Martínez, L., D. Romero, and E.J. Alfaro. 2023. Assessment of the spatial variation in the occurrence and intensity of major hurricanes in the Western Hemisphere. Climate 11(1): Article 15.
[]
Maskrey A, Lavell A. Mena FC, Pico PC. The urbanisation of risk. Urbicide: The death of the city, 2023 Cham Springer 235-261,
CrossRef Google scholar
[]
Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L. The impact of climate change on global tropical cyclone damage. Nature Climate Change, 2012, 2(3): 205-209,
CrossRef Google scholar
[]
Myers CA, Slack T, Singelmann J. Social vulnerability and migration in the wake of disaster: The case of Hurricanes Katrina and Rita. Population and Environment, 2008, 29: 271-291,
CrossRef Google scholar
[]
NCEI (National Centers for Environmental Information). n.d. https://www.ncei.noaa.gov/products/international-best-track-archive. Accessed 3 Aug 2023.
[]
Oliver-Smith, A., I. Alcántara-Ayala, I. Burton, and A. Lavell. 2016. Forensic investigations of disasters (FORIN). A conceptual framework and guide to research. Beijing: IRDR.
[]
Parker, L., C. Bourgoin, A. Martinez-Valle, and P. Läderach. 2019. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PloS One 14(3): Article e0213641.
[]
Patricola CM, Wehner MF. Anthropogenic influences on major tropical cyclone events. Nature, 2018, 563(7731): 339-346,
CrossRef Google scholar
[]
PNUD (Programa de las Naciones Unidas para el Desarrollo). 2000. Human development in Nicaragua: Equity to overcome vulnerability (El Desarrollo humano en Nicaragua: Equidad para supercar la vulnerabilidad). Managua, Nicaragua: Programa de las Naciones Unidas para el Desarrollo (in Spanish).
[]
Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, Kennard H, Lampard P, et al.. The 2021 report of the Lancet countdown on health and climate change: Code red for a healthy future. The Lancet, 2021, 398(10311): 1619-1662,
CrossRef Google scholar
[]
Saunders MA, Chandler RE, Merchant CJ, Roberts FP. Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophysical Research Letters, 2000, 27(8): 1147-1150,
CrossRef Google scholar
[]
SINAPRED (Sistema Nacional para la Prevención, Mitigación y Atención de Desastres). 2020. Final mission report: Hurricane Eta and Iota (Informe final de misión: Huracán Eta e Iota). Managua, Nicaragua: Centro de documentación del SINAPRED (in Spanish).
[]
Smith E. Atlantic and east coast hurricanes 1900–98: A frequency and intensity study for the twenty-first century. Bulletin of the American Meteorological Society, 1999, 80(12): 2717-2720,
CrossRef Google scholar
[]
Sobel AH, Camargo SJ, Hall TM, Lee CY, Tippett MK, Wing AA. Human influence on tropical cyclone intensity. Science, 2016, 353(6296): 242-246,
CrossRef Google scholar
[]
Tyner B, Aiyyer A, Blaes J, Hawkins DR. An examination of wind decay, sustained wind speed forecasts, and gust factors for recent tropical cyclones in the Mid-Atlantic region of the United States. Weather and Forecasting, 2015, 30(1): 153-176,
CrossRef Google scholar
[]
UNOSAT (The United Nations Satellite Centre). 2020. Satellite detected waters in Puerto Cabezas, Prinzapolka and Laguna de Perlas Municipality, Nicaragua, as of 8 November 2020. https://unosat.org/products/2965. Accessed 7 Aug 2023.
[]
Velásquez GE, Alcántara-Ayala I. The chronological account of the impact of tropical cyclones in Nicaragua between 1971 and 2020. AUC Geographica, 2023, 58(1): 74-95,
CrossRef Google scholar
[]
Walsh KJ, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, Knutson TR, Kossin JP, et al.. Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7(1): 65-89
[]
Weinkle J, Maue R, Pielke R Jr. Historical global tropical cyclone landfalls. Journal of Climate, 2012, 25(13): 4729-4735,
CrossRef Google scholar
[]
Yap W, Lee Y, Gouramanis C, Switzer AD, Yu F, Lau AYA, Terry JP. A historical typhoon database for the southern and eastern Chinese coastal regions, 1951 to 2012. Ocean and Coastal Management, 2014, 108: 109-115,
CrossRef Google scholar
[]
Zandbergen PA. Exposure of US counties to Atlantic tropical storms and hurricanes, 1851–2003. Natural Hazards, 2008, 48(1): 83-99,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/