Urban Flood Mitigation Strategies with Coupled Gray–Green Measures: A Case Study in Guangzhou City, China
Jiayue Li, Jiajun Zeng, Guoru Huang, Wenjie Chen
International Journal of Disaster Risk Science ›› 2024, Vol. 15 ›› Issue (3) : 467-479.
Urban Flood Mitigation Strategies with Coupled Gray–Green Measures: A Case Study in Guangzhou City, China
The integration of gray and green infrastructure has proven to be a feasible approach for managing stormwater in established urban areas. However, evaluating the specific contributions of such coupled strategies is challenging. This study introduced a novel integrated hydrological-hydrodynamic model that takes into account the layout of low-impact development (LID) facilities along with pipeline alignment and rehabilitation. Reliable results from modeling were used to assess the individual contribution of LID and improved drainage facilities to urban flooding mitigation. We selected a natural island in Guangzhou City, China, as the study site. The results indicate that combining three LID measures, namely green roofs, sunken green spaces, and permeable pavements, can reduce total runoff by 41.7% to 25.89% for rainfall recurrence periods ranging from 1 year to 100 years, and decrease the volume of nodal overflow by nearly half during rainfall events of less than 10-year return period. By integrating LID measures with the upgraded gray infrastructure, the regional pipeline overloading condition is substantially alleviated, resulting in a significant improvement in pipeline system resilience. For urban flooding control, it is recommended to integrate sufficient green space and avoid pipe-laying structural issues during urban planning and construction. The findings may assist stakeholders in developing strategies to best utilize gray and green infrastructure in mitigating the negative effects of urban flooding.
Coupled hydrodynamic model / Gray–green approach / Guangzhou City / LID / Pipe renovation / Urban inundation
[] |
|
[] |
Bakhshipour, A.E., M. Bakhshizadeh, U. Dittmer, A. Haghighi, and W. Nowak. 2019. Hanging gardens algorithm to generate decentralized layouts for the optimization of urban drainage systems. Journal of Water Resources Planning and Management 145(9): Article 04019034.
|
[] |
|
[] |
Betterle, A., and G. Botter. 2021. Does catchment nestedness enhance hydrological similarity? Geophysical Research Letters 48(13): Article e2021GL094148.
|
[] |
|
[] |
|
[] |
|
[] |
Browder, G., S. Ozment, I.R. Bescos, T. Gartner, and G.-M. Lange. 2019. Integrating green and gray: Creating next generation infrastructure. https://www.wri.org/research/integrating-green-and-gray-creating-next-generation-infrastructure. Accessed 31 May 2024.
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
Islam, A., S. Hassini, and W. El-Dakhakhni. 2021. A systematic bibliometric review of optimization and resilience within low impact development stormwater management practices. Journal of Hydrology 599: Article 126457.
|
[] |
|
[] |
|
[] |
Koc, K., Ö. Ekmekcioğlu, and M. Özger. 2021. An integrated framework for the comprehensive evaluation of low impact development strategies. Journal of Environmental Management 294: Article 113023.
|
[] |
Leng, L.Y., H.F. Jia, A.S. Chen, D.Z. Zhu, T. Xu, and S. Yu. 2021. Multi-objective optimization for green-grey infrastructures in response to external uncertainties. Science of The Total Environment 775: Article 145831.
|
[] |
Li, F., J.R. Yan, H.X. Yan, T. Tao, and H.-F. Duan. 2023. 2D Modelling and energy analysis of entrapped air-pocket propagation and spring-like geysering in the drainage pipeline system. Engineering Applications of Computational Fluid Mechanics 17(1): Article 2227662.
|
[] |
Liu, Z.J., Z.X. Han, X.Y. Shi, X.Y. Liao, L.Y. Leng, and H.F. Jia. 2023. Multi-objective optimization methodology for green-gray coupled runoff control infrastructure adapting spatial heterogeneity of natural endowment and urban development. Water Research 233: Article 119759.
|
[] |
Liu, T.Q., Y. Lawluvy, Y. Shi, and P.-S. Yap. 2021. Low impact development (LID) practices: A review on recent developments, challenges and prospects. Water, Air, & Soil Pollution 232(9): Article 344.
|
[] |
|
[] |
|
[] |
Ma, B.Y., Z.N. Wu, C.H. Hu, H.L. Wang, H.S. Xu, D.H. Yan, and S. Soomro. 2022. Process-oriented SWMM real-time correction and urban flood dynamic simulation. Journal of Hydrology 605: Article 127269.
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
Peng, Z.D., X.Y. Lin, M. Simon, and N. Niu. 2021. Unit and regression tests of scientific software: A study on SWMM. Journal of Computational Science 53: Article 101347.
|
[] |
|
[] |
|
[] |
Rossman, L.A. 2015. Storm Water Management Model user’s manual, Version 5.1. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. https://www.epa.gov/sites/default/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf. Accessed 31 May 2024.
|
[] |
|
[] |
|
[] |
|
[] |
Tansar, H., H.-F. Duan, and O. Mark. 2023. A multi-objective decision-making framework for implementing green-grey infrastructures to enhance urban drainage system resilience. Journal of Hydrology 620: Article 129381.
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
Wang, M., Y. Zhang, D.Q. Zhang, Y.S. Zheng, S. Li, and S.K. Tan. 2021b. Life-cycle cost analysis and resilience consideration for coupled grey infrastructure and low-impact development practices. Sustainable Cities and Society 75: Article 103358.
|
[] |
|
[] |
Xu, C.Q., T. Tang, H.F. Jia, M. Xu, T. Xu, Z.J. Liu, Y. Long, and R.R. Zhang. 2019. Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resources, Conservation and Recycling 151: Article 104478.
|
[] |
|
[] |
|
[] |
|
[] |
|
/
〈 |
|
〉 |