Investigate the solution of an initial Hilfer fractional value problem

Amol D. Khandagale , Arif S. Bagwan , Sabri T. M. Thabet , Imed Kedim

An International Journal of Optimization and Control: Theories & Applications ›› 2025, Vol. 15 ›› Issue (3) : 493 -502.

PDF (420KB)
An International Journal of Optimization and Control: Theories & Applications ›› 2025, Vol. 15 ›› Issue (3) : 493 -502. DOI: 10.36922/IJOCTA025120056
RESEARCH ARTICLE
research-article

Investigate the solution of an initial Hilfer fractional value problem

Author information +
History +
PDF (420KB)

Abstract

This paper aims to investigate sufficient criteria of the existence solution for a new category of nonlinear fractional differential equation under the Hilfer fractional derivative. The primary existence results are achieved by using a modified version of the Krasnoselskii-Dhage fixed-point theorem in the weighted Banach space. Finally, an application is illustrated to test the validity of the findings.

Keywords

Initial value problem / Hilfer fractional derivative / Fixed point theorem

Cite this article

Download citation ▾
Amol D. Khandagale, Arif S. Bagwan, Sabri T. M. Thabet, Imed Kedim. Investigate the solution of an initial Hilfer fractional value problem. An International Journal of Optimization and Control: Theories & Applications, 2025, 15(3): 493-502 DOI:10.36922/IJOCTA025120056

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

None.

Conflict of interest

The authors declare no conflict of interest.

References

[1]

Hilfer R. Fractional Time Evolution: Applications of Fractional Calculus in Physics. London: World Scientific; 2000.

[2]

Smart DR. Fixed Point Theorems. Cambridge University Press; 1973.

[3]

Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier; 2006.

[4]

Miller KS, Ross B. An Introduction to the Fractional Calculus and Differential E quations. New York: John Wiley; 1993.

[5]

Abdeljawad T, Thabet STM, Kedim I, and Cortez VM. On a new structure of multi-term Hilfer frac-tional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Math. 2024; 9(3):7372-7395.

[6]

Rezapour S, Thabet STM, Rafeeq AS, Kedim I, Vivas-Cortez M, Aghazadeh N. Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions. PLoS ONE 2024; 19(7): e0300590. https://doi.org/10.1371/journal.pone.0300590

[7]

Salim A, Thabet STM, Kedim I, Vivas-Cortez M. On the nonlocal hybrid (k, φ)-Hilfer inverse problem with delay and anticipation. AIMS Math. 2024; 9(8): 22859-22882. https://doi.org/10.3934/math.20241112

[8]

Ahmad B, Ntouyas SK. Initial value problem of fractional order Hadamard-type functional differential equations. Electron J Differ Equat. 2015;2015:1-9.

[9]

Bagwan A, & Pachpatte D. Existence and stability of nonlocal initial value problems involving generalized Katugampola derivative. Kragujevac J Math., 2022; 46(3):443-460.

[10]

Bagwan A, Pachpatte D. Existence and unique-ness results for implicit fractional differential equations involving generalized Katugampola derivative. South East Asian JMath Mathemat Sci. 2021; 17(1):77-94.

[11]

Bagwan A, Pachpatte D. On the existence results of a coupled system of generalized Katugampola fractional differential equations. Prog Fract Differ Appl., 2023; 9(2):257-269.

[12]

Bagwan A, Pachpatte D, Kiseľák J, Stehlík M. On existence results of boundary value problems of Caputo fractional difference equations for weak-form efficient market hypothesis. Stoch Anal Appl., 2025; 43(1):30-47. https://doi.org/10.1080/07362994.2024.2424343

[13]

Benchohra M, Lazreg JE. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud Univ Babes-Bolyai Math. 2017;62:27-38.

[14]

Furati KM, Kassim MD, Tatar Ne. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput Math Appl., 2012;64:1616-1626.

[15]

Hilfer R, Luckho Y, Tomovski Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract Calc Appl Anal. 2009;12:289-318.

[16]

Furati KM, Kassim MD, Tatar NE-. Non-existence of global solutions for differential equations involving Hilfer fractional derivative. Electron J Differ Equat. 2013;2013:1-10.

[17]

Khandagake AD, Hamoud AA, Ghadle KP. Existence of solutions for fractional integro-differential equations involving the Caputo type Atangana-Baleanu derivative. Turkish J Comput Math Educ. 2021; 12(14):613-620.

[18]

Khandagake AD, Hamoud AA, Ghadle KP. New results on nonlocal fractional Volterra-Fredholm integro-differential equations. J Math Comput Sci. 2021; 11(5): 6193-6204.

[19]

Khandagake AD, Hamoud AA, Shah R, Ghadle KP. Some new results on Hadamard neutral fractional nonlinear Volterra-Fredholm integro-differential equations. Discontin Nonlinear Complex. 2023; 12(4):893-903.

[20]

Subashini R, Jothimani K, Saranya S, Ravichandran C. On the results of Hilfer fractional deriva-tives with nonlocal conditions. Int J Pure Appl Math. 2018;118:277-289.

[21]

Wang J, Zhang Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl Math Comput. 2015;266:850-859.

[22]

Dhage BC. Remarks on two fixed point theorems involving the sum and product of two operators. Comput Math Appl. 2003;46:1779-1785.

[23]

Dhage BC. Random fixed point theorems in Banach algebras with applications to random integral equations. Tamkang J Math. 2003;34:29-43.

[24]

Dhage BC. A fixed point theorem in Banach alge-bras with applications to functional integral equations. Kyungpook Math J. 2004;44:145-155.

[25]

Dhage BC. Some variants of two basic hybrid fixed point theorems of Krasnoselskii and Dhage with applications. Nonlinear Stud. 2018;25:559-573.

[26]

Mohan RM, Vijayakumar V, Veluvolu KC, Shukla A, Nisar KS. Existence and optimal control results for Caputo fractional delay Clark’s subdif-ferential inclusions of order r ∈ (1, 2) with sectorial operators. Optimal Control Appl Methods. 2024; 45(4):1832-1850. doi: 10.1002/oca.3125

[27]

Mohan RM, Vijayakumar V, Shukla A, Nisar KS, Rezapour S. Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space. Int J Nonlinear Sci Numer Simulat. 2023; 24(6): 2047-2060. https://doi.org/10.1515/ijnsns-2021-0368

[28]

Mohan RM, Vijayakumar V, Veluvolu KC. Higher-order Caputo fractional integro differential inclusions of Volterra-Fredholm type with impulses and infinite delay: existence results. J Appl Math Comput. https://doi.org/10.1007/s12190-025-02412-4

[29]

Mohan RM, Vijayakumar V, Veluvolu KC. Improved order in Hilfer fractional differential systems: solvability and optimal control problem for hemivariational inequalities. Chaos Solit Fractals 2024;188:115558. https://doi.org/10.1016/j.chaos.2024.115558

[30]

Dhage C, Lakshmikantham V. Basic results on hybrid differential equations. Nonlinear Anal Real World Appl. 2010;4:414-424.

[31]

Dhage BC, Jadhav NS. Basic results in the theory of hybrid differential equations with linear perturbations of second type. Tamkang J Math., 2013;44:171-186.

[32]

Lu H, Sun S, Yang D, Teng H. Theory of fractional hybrid differential equations with linear perturbations of second type. Bound Value 2013;23:1-16.

[33]

Akhadkulov H, Alsharari F, Ying TY. Applications of Krasnoselskii-Dhage type fixed-point theorems to fractional hybrid differential equations. Tamkang J Math. 2021; 52(2):281-292.

[34]

Kiataramkul C, Ntouyas SK, Tariboon J. Existence results for ψ-Hilfer fractional integro-differential hybrid boundary Value problems for differential equations and inclusions. Adv Math Phys. 2021:12.Article Id: 9044313. https://doi.org/10.1155/2021/9044313

[35]

Sene N, Ndiaye A. Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative. Int J Optim Control Theor Appl IJOCTA., 2024; 14(3): 208-219. https://doi.org/10.11121/ijocta.1464

[36]

Houas M, Alzabut J, Khuddush M. Existence and stability analysis to the sequential coupled hybrid system of fractional differential equations with two different fractional derivatives. Int J Optim Control Theor Appl IJOCTA. 2023; 13(2):224-235. http://doi.org/10.11121/ijocta.2023.1278

[37]

Mani G, Gnanaprakasam AJ, Guran L, George R, Mitrović ZD. Some results in fuzzy b-metric space with b-triangular property and applications to Fredholm Integral equations and dynamic programming. Mathematics 2023; 11(19):4101. https://doi.org/10.3390/math11194101

[38]

Mani G, Gnanaprakasam AJ, Ege O, Alo-qaily A, Mlaiki N. Fixed point results in C-algebra-valued partial b-Metric spaces with re-lated application. Mathematics. 2023; 11(5):1158. https://doi.org/10.3390/math11051158

[39]

Yavuz M. Novel solution methods for ini-tial boundary value problems of fractional order with conformable differentiation. Int J Optim Control Theor Appl IJOCTA. 2018; 8(1):1-7. https://doi.org/10.11121/ijocta.01.2018.00540

[40]

Akgül A, Inc M, Baleanu D. On solutions of variable-order fractional differential equations. Int J Optim Control Theor Appl IJOCTA. 2017; 7(1):112-116. http://doi.org/10.11121/ijocta.01.2017.00368

[41]

Mani G, Haque S, Gnanaprakasam AJ, Ege O, Mlaiki N. The study of bicomplex-Valued controlled metric spaces with applications to fractional differential equations. Mathematics. 2023; 11(12):2742. https://doi.org/10.3390/math11122742

[42]

Gnanaprakasam AJ, Mani G, Ege O, Alo-qaily A, Mlaiki N. New fixed point results in orthogonal B-metric spaces with related applications. Mathematics. 2023; 11(3):677. https://doi.org/10.3390/math11030677

[43]

Nallaselli G, Gnanaprakasam AJ, Mani G, Mitrović ZD, Aloqaily A, Mlaiki N. Integral equation via fixed point theorems on a new type of convex contraction in b-Metric and 2-Metric spaces. Math. 2023; 11(2):344. https://doi.org/10.3390/math11020344

AI Summary AI Mindmap
PDF (420KB)

251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/