Proportional integral derivative plus control for nonlinear discrete-time state-dependent parameter: Industrial applications

E. M. Shaban

An International Journal of Optimization and Control: Theories & Applications ›› 2025, Vol. 15 ›› Issue (3) : 517 -534.

PDF (5616KB)
An International Journal of Optimization and Control: Theories & Applications ›› 2025, Vol. 15 ›› Issue (3) : 517 -534. DOI: 10.36922/IJOCTA025080034
RESEARCH ARTICLE
research-article

Proportional integral derivative plus control for nonlinear discrete-time state-dependent parameter: Industrial applications

Author information +
History +
PDF (5616KB)

Abstract

In modern industrial automation, control of nonlinear systems with complex dynamics poses significant challenges, especially when dealing with discrete time models that incorporate state-dependent parameters. Addressing this need, this paper explores the Proportional-integral-derivative-plus (PID+) control approach applied to nonlinear systems characterized by state-dependent parameter (SDP) discrete-time models. Two industrial applications are demonstrated as follows: a bitumen tank system and a reeling/packing machine used in a bitumen membrane sheet production line. Both systems are modeled using discrete-time transfer functions with SDP structures. The present work extends the novel SDP-PID+ approach by formulating its control algorithms and integrating additional proportional and input compensators. This enhancement enables effective and intuitive handling of processes characterized by discrete-time transfer functions with any order and sampling time delay. The approach enables a straightforward implementation of the SDP-PID+ algorithm across two distinct industrial applications, considering their varying response times. The approach reduces the time required to design the SDP-PID+ method for the selected applications while also demonstrating enhanced robustness and performance. It effectively mitigates disturbances and accommodates nonlinearities, higher-order dynamics, and delays.

Keywords

Proportional-integral-derivative control / State-dependent parameter models / Non-minimal state space / State variable feedback

Cite this article

Download citation ▾
E. M. Shaban. Proportional integral derivative plus control for nonlinear discrete-time state-dependent parameter: Industrial applications. An International Journal of Optimization and Control: Theories & Applications, 2025, 15(3): 517-534 DOI:10.36922/IJOCTA025080034

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

None.

Conflict of interest

The author has no relevant financial or nonfinancial interests to disclose.

References

[1]

Borase RP, Maghade DK, Sondkar SY, Pawar SN. A review of PID control, tuning methods, and applications. Int J Dyn Control. 2021; 9:818-827. http://dx.doi.org/10.1007/s40435-020-00665-4

[2]

Bennett S. Development of the PID controller. IEEE Control Syst Mag. 1993; 13(6):58-62. https://doi.org/10.1109/37.248006

[3]

Liu L, Lv W, Liu J, et al. Performance of active-quenching SPAD array based on the tri-state gates of FPGA and packaged with bare chip stacking. Sensors, 2023; 23(9):4314. https://doi.org/10.3390/s23094314

[4]

Vega P, Prada C, Aleixandre V. Self-tuning predictive PID controller. IEE Proc D: Control Theory Appl. 1991; 138:303-312. http://dx.doi.org/10.1049/ip-d.1991.0041

[5]

Porter B, Jones AH. Genetic tuning of digital PID controllers. Electron Lett. 1992; 28(9):843-844. IET Digital Library.

[6]

Åström KJ, Hägglund T, Hang CC, Ho WK, Automatic tuning and adaptation for PID controllers: a survey. Control Eng Pract. 1993; 1(4):699-714.http://dx.doi.org/10.1016/0967-0661(93)91394-C.

[7]

Leva A. PID autotuning algorithm based on relay feedback. IEEE Proc D Control Theory Appl. 1993; 140:328-338. http://dx.doi.org/10.1049/ip-d.1993.0044.

[8]

Khodadadi H, Ghadiri H. Self-tuning PID con-troller design using fuzzy logic for half-car active suspension system. Int J Dyn Control. 2018; 6(1):224-232. http://dx.doi.org/10.1007/s40435-016-0291-5.

[9]

Loiseau J-J, Boudana M, Ladaci S. Fractional order PIDµ control design for a Class of cyber-physical systems with fractional order time-delay models. Int J Cyber Phys Syst. 2019; 1(2):1-18. http://dx.doi.org/10.4018/IJCPS.2019070101.

[10]

Hamed AR, Shaban EM, Darwish RR, Abdel Ghany AM. Design and implementation of discrete PID control applied to Bitumen tank based on a new approach of pole placement technique. J of Dyn Control. 2017; 5(3):604-613. https://doi.org/10.1007/s40435-015-0199-

[11]

Shaban EM, Sayed H, Abdelhamid A. A novel discrete PID+ controller applied to higher-order/time-delayed nonlinear systems with practical implementation. J Dyn Control. 2019; 7(3):888-900. https://doi.org/10.1007/s40435-018-0472-5

[12]

Sayed H, Shaban EM, Abdelhamid A. State dependent parameter PID+ control applied to a nonlinear manipulator arm. In: RAEMP 2019 International Conference on Recent Advances in Engineering Mathematics and Physics, Dec 24-26. Springer, Cairo, Egypt; 2019. http://dx.doi.org/10.1007/978-3-030-39847-71

[13]

Hamed AR, Shaban EM, Abdelhaleem, Abdel Ghany AM. Industrial implementation of state dependent parameter PID+control for nonlinear time-delayed Bitumen tank system. Iran J Sci Technol - Trans Electr. 2022; 46(11):743-751. https://doi.org/10.1007/s40998-022-00488-3

[14]

Bashiri AH. Empirical study of robust/developed PID control for nonlinear time-delayed dynamical system in discrete time domain. Heliyon, 2024; 10(9). http://dx.doi.org/10.1016/j.heliyon.2024.e11935

[15]

Shaban EM, Hamed AR, Bassiuny AM, Abdelghany AM. On implementation of nonlinear PID+controller embedded on FPGA mod-ule for industrial system. Int J Dyn Contr. 2023; 12(7):2331-2340. https://doi.org/10.1007/s40435-023-01338-8

[16]

Taylor CJ, Young PC, Chotai A. State-space control system design based on non-minimal state-variable feedback: further generalization and unification results. Int J Control. 2000; 73:1329-1345. http://dx.doi.org/10.1080/00207170010004698.

[17]

Shaban EM, Hamed AR, Darwish RR, Abdel Ghany AM. New tuning approach of discrete PI/PID controller applied to Bitumen system based on non-minimal state-space formulation. In: ICCTA 2015, IEEE 25th International Conference, Oct 24-26, Alexandria, Egypt. IEEE Xplore Digital Library; 2015:52-57.

[18]

Shaban EM, Ako S, Taylor CJ, Seward DW. Development of an automated verticality alignment system for a vibro-lance. Autom Constr. 2008; 17(5):645-655. http://dx.doi.org/10.1016/j.autcon.2007.08.001

[19]

Taylor CJ, Shaban EM, Stables MA, Ako S. Proportional-integral-plus control applications of state-dependent parameter models. Part I: J Syst Control Eng. 2007; 221(7):1019-1031. https://doi.org/10.1243/09596518JSCE366

[20]

Stables MA, James CJ. Non-linear Control of Ventilation Rate using State-dependent Parameter Models. Biosyst Eng. 2006; 95(1):7-18, ISSN1537-5110. https://doi.org/10.1016/j.biosystemseng.2006.05.015

[21]

Taylor CJ, Robertson State-dependent control of a hydraulically actuated nuclear decommissioning robot. Control Eng Pract. 2013; 21(12):1716-1725. http://dx.doi.org/10.1016/j.conengprac.2013.06.003

[22]

Deepa SN, Sugumaran G. Design of PID controller for higher-order continuous systems using MPSO-based model formulation technique. Int J Electr Electron Eng. 2011; 5(4):289-295. http://dx.doi.org/10.5281/zenodo.1056472

[23]

Young PC. Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation. In: Fitzgerald WJ, ed. Nonlinear and Nonstationary Signal Processing. Cambridge University Press; 2000. http://dx.doi.org/10.1016/B978-0-7506-7359-4.50015-9

[24]

Shaban EM, James CJ, Chotai A. State dependent parameter, proportional-Integral-Plus (SDP-PIP) control of a Nonlinear Robot Digger Arm. In: UKACC Control 2004, University of Bath, Bath, UK, ID-059. 2004; http://dx.doi.org/10.1016/j.ifacol.2005.10.053

[25]

Dixon R, Taylor CJ, Shaban EM. Comparison of classical and modern control applied to an excavator-arm. International Federation of Automatic Control 16th Triennial World Congress (IFAC-05), Prague, Czech Republic. 2005; 38(1):589-594. http://dx.doi.org/10.3182/20050703-6-CZ-1902.01368

[26]

Shaban EM, Zied K, Taylor CJ, Seward DW. Nonlinear control system design for construction robots: estimation, partial linearization by feedback and state-dependent-parameter control, 22nd International Symposium on Automation and Robotics in Construction (ISARC-05), Fer-rara, Italy; 2005. https://doi.org/10.22260/ISARC2005/0041.

[27]

Shaban EM, Nada AA. On linearization of nonlinear dynamic systems described by state-dependent-Parameter (SDP) Discrete-Time Model. In: 5th European Conference on Computational Mechanics (ECCM V), Barcelona, Spain. CIMNE - ECCM V Proceedings; 2014: 538-547.

[28]

Young PC. Recursive Estimation and Time Series Analysis. Springer-Verlag; 1984. http://dx.doi.org/10.1007/978-3-642-21981-8

[29]

Young PC. Simplified Refined Instrumental Variable (SRIV) estimation and True Digital Control (TDC): A tutorial introduction. 1st European Control Conference: Grenoble, France. 1991;1295-1306.

[30]

Janot A, Young PC, Gautier M. Identification and control of electro-mechanical systems using state dependent parameter estimation. Int J Control. 2017; 90(4):643-660. http://dx.doi.org/10.1080/00207179.2016.1209565

[31]

Taylor CJ, Pedregal DJ, Young PC, Tych W. Environmental time series analysis and forecasting with the Captain Toolbox. Environ Model Softw. 2007; 22:797-814. http://dx.doi.org/10.1016/j.envsoft.2006.06.002

[32]

Young PC, Taylor CJ, Tych W, Pedregal DJ. The Captain Toolbox. Center for Research on Environmental Systems and Statistics, Lancaster University:UK. 2007. http://www.es.lancs.ac.uk/cres/captain

[33]

He J-B, Wang Q-G, Lee T-H. PI/PID controller tuning via LQR approach. Chem Eng Sci. 2000; 55(13):2429-2439. http://dx.doi.org/10.1016/S0009-2509(99)00512-6

[34]

Das S, Pan I, Halder K, Das S, Gupta A. Optimum weight selection-based LQR formulation for the design of fractional-order PID controllers to handle a class of fractional-order systems. In: International Conference on Computer Communication and Informatics (ICCCI), Jan 4, IEEE; 2013: pp. 1-6; http://dx.doi.org/10.1109/ICCCI.2013.6466137

[35]

Young PC, Behzadi MA, Wang CL, Chotai A. Direct digital and adaptive control by input-output, state-variable feedback pole assignment. Int J Control. 1987; 46:1867-1881. http://dx.doi.org/10.1080/00207178708934274

[36]

McCabe AP, Young PC, Chotai A, Taylor CJ. Proportional-Integral-Plus (PIP) control of non-linear systems. Syst Sci. 2000; 26:25-46. http://dx.doi.org/10.1002/sys.10004

[37]

˚Astr¨om KJ, Wittenmark B. Computer Controlled Systems: Theory and Design. Prentice-Hall Information and System Sciences Series. 1984.

[38]

Shaban EM. Deadbeat response of nonlinear systems described by discrete-time state dependent parameter using exact linearization by local coordinate transformation. J Am Sci. 2012; 8(10):355-366. http://dx.doi.org/10.7537/j.issn.1545-1003.2012.10.053

[39]

Shaban EM, Taylor CJ. Proportional-Integral-Plus control of a class of nonlinear systems using exact and partial linearization by feed-back. ICGST Int J Autom Control Syst Eng. 2006; 6:55-70. http://dx.doi.org/10.1109/ICCCI.2013.6466137

[40]

Hamed AR, Darwish RR, Shaban EM, Abdel Ghany AM. Hardware synthesis and dynamic modeling of Bitumen tank. J Am Sci. 2014; 10(12):183-189. http://dx.doi.org/10.7537/j.issn.1545-1003.2014.12.021

AI Summary AI Mindmap
PDF (5616KB)

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/