An improved fluid flow algorithm for hydraulic fracturing: Optimizing domain volume and crack pressure update strategies

Wei Zhang , Jing Bi , Yu Zhao , Yongfa Zhang , Chaolin Wang , Yang Pan

Int J Min Sci Technol ›› 2025, Vol. 35 ›› Issue (4) : 639 -657.

PDF (20799KB)
Int J Min Sci Technol ›› 2025, Vol. 35 ›› Issue (4) : 639 -657. DOI: 10.1016/j.ijmst.2025.03.001

An improved fluid flow algorithm for hydraulic fracturing: Optimizing domain volume and crack pressure update strategies

Author information +
History +
PDF (20799KB)

Abstract

With the widespread adoption of hydraulic fracturing technology in oil and gas resource development, improving the accuracy and efficiency of fracturing simulations has become a critical research focus. This paper proposes an improved fluid flow algorithm, aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy. The algorithm optimizes the aperture law and iteration criteria, focusing on improving the domain volume and crack pressure update strategy, thereby enabling precise capture of dynamic borehole pressure variations during injection tests. The effectiveness of the algorithm is verified through three flow-solid coupling cases. The study also analyzes the effects of borehole size, domain volume, and crack pressure update strategy on fracturing behavior. Furthermore, the performance of the improved algorithm in terms of crack propagation rate, micro-crack formation, and fluid pressure distribution was further evaluated. The results indicate that while large-size boreholes delay crack initiation, the cracks propagate more rapidly once formed. Additionally, the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage, promote crack propagation, and improve computational efficiency.

Keywords

Hydraulic fracturing / Fluid flow algorithm / Domain volume optimization / Crack pressure update / Borehole size

Cite this article

Download citation ▾
Wei Zhang, Jing Bi, Yu Zhao, Yongfa Zhang, Chaolin Wang, Yang Pan. An improved fluid flow algorithm for hydraulic fracturing: Optimizing domain volume and crack pressure update strategies. Int J Min Sci Technol, 2025, 35(4): 639-657 DOI:10.1016/j.ijmst.2025.03.001

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52164001, 52064006, 52004072 and 52364004), the Science and Technology Support Project of Guizhou (Nos. [2020]4Y044), [2021] N404 and [2021] N511), the Guizhou Provincial Science and Technology Foundation (No. GCC [2022]005-1), Talents of Guizhou University (No. 201901), and the Special Research Funds of Guizhou University (Nos. 201903, 202011, and 202012).

References

[1]

Ning YR, Kazemi H, Tura A, Davis T. Carbon neutral oil assessment using a dualporosity compositional model in unconventional reservoirs. Geoenergy Sci Eng 2023;221:111227.

[2]

Bi J, Zhou XP. A novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics. Rock Mech Rock Eng 2017; 50(7):1833-49.

[3]

Zhuang J, Mu Z, Cai W, He H, Hosking LJ, Xi G, Jiao B. Multistage hydraulic fracturing of a horizontal well for hard roof related coal burst control: Insights from numerical modelling to field application. Int J Min Sci Technol 2024; 34 (8):1095-114.

[4]

Liu C, Yang Z, Qin Y, Yan X, Wang Y, Wang Z. Excess pore pressure behavior and evolution in deep coalbed methane reservoirs. Int J Min Sci Technol 2024; 34 (6):763-81.

[5]

Chen B, Barboza BR, Sun YN, Bai J, Thomas HR, Dutko M, Cottrell M, Li C. A review of hydraulic fracturing simulation. Arch Comput Meth Eng 2022; 29 (4):1-58.

[6]

Ni T, Pesavento F, Zaccariotto M, Galvanetto U, Zhu QZ, Schrefler BA. Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput Meth Appl Mech Eng 2020;366:113101.

[7]

Yi LP, Waisman H, Yang ZZ, Li XG. A consistent phase field model for hydraulic fracture propagation in poroelastic media. CMAME 2020;372:113396.

[8]

Bi J, Zhou XP. Numerical simulation of kinetic friction in the fracture process of rocks in the framework of General Particle Dynamics. Comput Geotech 2017;83:1-15.

[9]

Zhuang XY, Zhou SW, Sheng M, Li GS. On the hydraulic fracturing in naturallylayered porous media using the phase field method. Eng Geol 2020;266:105306.

[10]

Kar S, Chaudhuri A, Singh A, Pal S. Phase field method to model hydraulic fracturing in saturated porous reservoir with natural fractures. Eng Fract Mech 2023;286:109289.

[11]

Ferté G, Massin P, Moës N. 3D crack propagation with cohesive elements in the extended finite element method. Comput Meth Appl Mech Eng 2016;300:347-74.

[12]

Deng YH, Xia Y, Wang D, Jin Y. A study of Hydraulic fracture propagation in laminated shale using extended finite element method. Comput Geotech 2024;166:105961.

[13]

Chen LL, Wang ZW, Peng X, Yang JF, Wu PF, Lian HJ. Modeling pressurized fracture propagation with the isogeometric BEM. Geomech Geophys Geo Energy Geo Resour 2021; 7(3):51.

[14]

Luo WJ, Wang JL, Wang L, Zhou YF. An alternative BEM for simulating the flow behavior of a leaky confined fractured aquifer with the use of the semianalytical approach. Water Resour Res 2020; 56(5):e2019WR026581.

[15]

Bourdin B, Chukwudozie C, Yoshioka K. A variational approach to the numerical simulation of hydraulic fracturing. In: SPE Annual Technical Conference and Exhibition. Texas: SPE; 2012.

[16]

Markert B, Heider Y. Coupled multi-field continuum methods for porous media fracture. In: Recent Trends in Computational Engineering- CE2014. Cham: Springer International Publishing; 2015. p. 167-80.

[17]

Heider Y, Markert B. A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 2017;80:38-46.

[18]

Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Meth Eng 1999; 46(1):131-50.

[19]

Johari A, Heydari A. Reliability analysis of seepage using an applicable procedure based on stochastic scaled boundary finite element method. Eng Anal Bound Elem 2018;94:44-59.

[20]

Heider Y. A review on phase-field modeling of hydraulic fracturing. Eng Fract Mech 2021;253:107881.

[21]

Li XF, Li HB, Liu LW, Liu YQ, Ju MH, Zhao J. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int J Rock Mech Min Sci 2020;127:104219.

[22]

Zhao Y, Zhang YF, Wang CL, Liu Q. Hydraulic fracturing characteristics and evaluation of fracturing effectiveness under different anisotropic angles and injection rates: An experimental investigation in absence of confining pressure. J Nat Gas Sci Eng 2022;97:104343.

[23]

Zhang Y, Hou SH, Mei SH, Zhao TJ, Li DY. Experimental study of permeabilityhydraulic fracturing characteristics of tight rocks. Geomech Geophys Geo Energy Geo Resour 2022; 8(6):182.

[24]

Wrobel M, Mishuris G, Papanastasiou P. On the influence of fluid rheology on hydraulic fracture. Int J Eng Sci 2021;158:103426.

[25]

Dong Q, Wang Y, Chen B. Mesoscopic interpretation of hydraulic fracture initiation and breakdown pressure using discrete element method. Comput Geotech 2023;163:105739.

[26]

Zhuang L, Kim KY, Shin H, Jung S, Diaz M. Experimental investigation of effects of borehole size and pressurization rate on hydraulic fracturing breakdown pressure of granite. In:Proceedings of the 32nd US Symposium on Rock Mechanics. Norman: USRMS; 2018.

[27]

Wang S, Zhou J, Zhang LQ, Nagel T, Han ZH, Kong YL. Modeling injectioninduced fracture propagation in crystalline rocks by a fluid-solid coupling grain-based model. Rock Mech Rock Eng 2023; 56(8):5781-814.

[28]

Lei B, Zuo JP, Coli M, Yu X, Li Y, Liu HY. Investigation on failure behavior and hydraulic fracturing mechanism of Longmaxi shale with different bedding properties. Comput Geotech 2024;167:106081.

[29]

Zeng W, Yang SQ, Tian WL, Wen K. Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code. J Cent South Univ 2018; 25(6):1367-85.

[30]

Zhang YL, Shao JF, Liu ZB, Shi C. An improved hydromechanical model for particle flow simulation of fractures in fluid-saturated rocks. Int J Rock Mech Min Sci 2021;147:104870.

[31]

Duan K, Kwok CY, Wu W, Jing L. DEM modeling of hydraulic fracturing in permeable rock: Influence of viscosity, injection rate and in situ states. Acta Geotech 2018; 13(5):1187-202.

[32]

Ding XB, Zhang LY. A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models. Int J Rock Mech Min Sci 2014;69:111-9.

[33]

Potyondy D. A flat-jointed bonded-particle material for hard rock. In:Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Chicago: Geomechanics Symposium; 2021.

[34]

Wu SC, Xu XL. A study of three intrinsic problems of the classic discrete element method using flat-joint model. Rock Mech Rock Eng 2016; 49 (5):1813-30.

[35]

Al-Busaidi A, Hazzard JF, Young RP. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J Geophys Res Solid Earth 2005; 110(B6): B06302.

[36]

Zimmerman RW, Bodvarsson GS. Hydraulic conductivity of rock fractures. Transp Porous Medium 1996; 23(1):1-30.

[37]

Shimizu H, Murata S, Ishida T. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci 2011; 48(5):712-27.

[38]

Braden B. The surveyor’s area formula. Coll Math J 1986; 17(4):326-37.

[39]

Al-busaidi A. Distinct element modelling of hydraulically-induced fracture and associated seismicity. Doctoral Dissertation. Liverpool: The University of Liverpool; 2004. p. 52-4.

[40]

Zhang LQ, Zhou J, Braun A, Han Z. Sensitivity analysis on the interaction between hydraulic and natural fractures based on an explicitly coupled hydrogeomechanical model in PFC2D. J Petro Sci Eng 2013;167:638-53.

[41]

Zhou J, Zhang LQ, Pan ZJ, Han ZH. Numerical investigation of fluid-driven nearborehole fracture propagation in laminated reservoir rock using PFC 2D. J Nat Gas Sci Eng 2016;36:719-33.

[42]

Qin R, Duan C. The principle and applications of Bernoulli equation. In: International Conference on Fluid Mechanics and Industrial Applications (FMIA). Taiyuan: IOP; 2017.p.1-2

[43]

Zhang R, Zhao C, Yang CY, Xing JQ, Morita C. A comprehensive study of singleflawed granite hydraulically fracturing with laboratory experiments and flatjointed bonded particle modeling. Comput Geotech 2021;140:104440.

[44]

Shi C, Yang WK, Yang JX, Chen X. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code. Granul Matter 2019; 21(2):38.

[45]

Wang T, Zhou WB, Chen JH, Xiao X, Li Y, Zhao XY. Simulation of hydraulic fracturing using particle flow method and application in a coal mine. Int J Coal Geol 2014;121:1-13.

[46]

Haimson BC, Cornet FH. ISRM Suggested Methods for rock stress estimation: Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min Sci 2003; 40(7-8):1011-20.

[47]

Chen M, Guo TK, Qu ZQ, Sheng M, Mu LJ. Numerical investigation into hydraulic fracture initiation and breakdown pressures considering wellbore compliance based on the boundary element method. J Petrol Sci Eng 2022;211:110162.

[48]

Dong Z, Tang SB, Ranjith PG, Lang YX. A theoretical model for hydraulic fracturing through a single radial perforation emanating from a borehole. Eng Fract Mech 2018;196:28-42.

[49]

Zhao XL, Huang BX, Wang Z. Experimental investigation on the basic law of directional hydraulic fracturing controlled by dense linear multi-hole drilling. Rock Mech Rock Eng 2018; 51(6):1739-54.

[50]

Tian WL, Yang SQ, Wang JG, Zeng W. Numerical simulation of permeability evolution in granite after thermal treatment. Comput Geotech 2020;126:103705.

AI Summary AI Mindmap
PDF (20799KB)

348

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/