Eco-friendly collectors in apatite froth flotation: A review

Gabriela Budemberg , Rickard Jolsterå , Saeed Chehreh Chelgani

Int J Min Sci Technol ›› 2025, Vol. 35 ›› Issue (4) : 539 -551.

PDF (3335KB)
Int J Min Sci Technol ›› 2025, Vol. 35 ›› Issue (4) : 539 -551. DOI: 10.1016/j.ijmst.2025.02.010

Eco-friendly collectors in apatite froth flotation: A review

Author information +
History +
PDF (3335KB)

Abstract

The global reliance on phosphate rock for agriculture and other industries, coupled with chemical regulations in developed countries, has driven the search for green alternatives in apatite flotation. This review investigates eco-friendly collectors’ effectiveness in promoting sustainable mineral processing, guiding future alternatives to traditional reagents. The manuscript discussed the surface properties of apatite and its interaction with eco-friendly collectors, assessing existing fundamental studies. This study sought to: (1) define, organize, and classify “eco-friendly” collectors; (2) evaluate their effect in IEP and contact angle; (3) provide a better understanding of the adsorption behavior of the different fatty acid chains into apatite surface; (4) assess their ability to reversely and directly float apatite; (5) address gaps to achieve selectivity and process optimization. Outcomes demonstrated that fatty acids are largely applied, but other renewable sources of these reagents have been promisingly evaluated. In addition, other natural reagents have been tested, and new green synthetics have demonstrated synergistic effects when combined with fatty acids, yielding significant improvements in grade and recovery. However, collector effectiveness varies with ore characteristics, like particle size and surface properties, which remain underexplored. Future research should design tailored collectors that align with mineralogical differences to enhance selectivity.

Keywords

Apatite / Flotation / Eco-friendly collectors / Adsorption / Synergic interactions

Cite this article

Download citation ▾
Gabriela Budemberg, Rickard Jolsterå, Saeed Chehreh Chelgani. Eco-friendly collectors in apatite froth flotation: A review. Int J Min Sci Technol, 2025, 35(4): 539-551 DOI:10.1016/j.ijmst.2025.02.010

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This manuscript resulted from a project financially supported by CAMM (Center of Advanced Mining and Metallurgy/Green Flotation), as a center of excellence at the Luleå University of Technology.

References

[1]

Grohol M, Veeh C. Study on the critical raw materials for the EU 2023-Final report. 2023.

[2]

US Geological Survey. Mineral commodity summaries 2023. 2023.

[3]

Andersson SS, Wagner T, Jonsson E, Fusswinkel T, Whitehouse MJ. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation. SE Sweden Geochim Cosmochim Acta 2019;255:163-87.

[4]

US Geological Survey. Mineral commodity summaries 2024.

[5]

Sis H, Chander S. Reagents used in the flotation of phosphate ores: A critical review. Miner Eng 2003; 16(7):577-85.

[6]

Somasundaran P, Sivakumar A. Advances in understanding flotation mechanisms. Min Metall Explor 1988; 5(3):97-103.

[7]

Dederichs T, Möller M, Weichold O. Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions: definition of the critical dispersion concentration. Langmuir 2009; 25(4):2007-12.

[8]

Gong WQ, Parentich A, Little LH, Warren LJ. Adsorption of oleate on apatite studied by diffuse reflectance infrared Fourier transform spectroscopy. Langmuir 1992; 8(1):118-24.

[9]

Kou J, Tao D, Xu G. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. Int J Miner Process 2010; 95(1-4):1-9.

[10]

Aarab I, Derqaoui M, Abidi A, Yaacoubi A, El Amari K, Etahiri A, Baçaoui A. Direct flotation of low-grade Moroccan phosphate ores: A preliminary microflotation study to develop new beneficiation routes. Arab J Geosci 2020; 13 (23):1252.

[11]

de Lima FV, Budemberg G, Cruz SH, Braga AS. A collector promoter for apatite flotation in the serra do salitre complex. Minerals 2023; 13(5):599.

[12]

Derhy M, Taha Y, Benzaazoua M, El-Bahi A, Ait-Khouia Y, Hakkou R. Assessment of the selective flotation of calcite, apatite and quartz using bio-based collectors: Flaxseed, nigella, and olive oils. Miner Eng 2022;182:107589.

[13]

Houot R. Beneficiation of phosphatic ores through flotation: Review of industrial applications and potential developments. Int J Miner Process 1982; 9(4):353-84.

[14]

Sis H, Chander S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants. Miner Eng 2003; 16(7):587-95.

[15]

Giesekke EW, Harris PJ. The role of polyoxyethylene alkyl ethers in apatite flotation at foskor, phalaborwa (South Africa). Miner Eng 1994; 7 (11):1345-61.

[16]

ECHA - European Chemicals Agency. Nonylphenol ethoxylates.

[17]

Ying GG, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates: a review. Environ Int 2002; 28(3):215-26.

[18]

Gasparetto H, de Castilhos F, Paula Gonçalves Salau N. Recent advances in green soybean oil extraction: A review. J Mol Liq 2022;361:119684.

[19]

Churchill JGB, Borugadda VB, Dalai AK. A review on the production and application of tall oil with a focus on sustainable fuels. Renew Sustain Energy Rev 2024;191:114098.

[20]

Bindraban PS, Dimkpa CO, Pandey R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils 2020; 56(3):299-317.

[21]

Robertson M. Sustainability principles and practice. Sustain Princ Pract 2021:1-532.

[22]

Nagtode VS, Cardoza C, Yasin HKA, Mali SN, Tambe SM, Roy P, Singh K, Goel A, Amin PD, Thorat BR, Cruz JN, Pratap AP. Green surfactants (biosurfactants): A petroleum-free substitute for sustainability-comparison, applications, market, and future prospects. ACS Omega 2023; 8(13):11674-99.

[23]

Veeramanoharan A, Kim SC. A comprehensive review on sustainable surfactants from CNSL: Chemistry, key applications and research perspectives. RSC Adv 2024; 14(35):25429-71.

[24]

Scott MJ, Jones MN. The biodegradation of surfactants in the environment. Biochim Biophys Acta BBA Biomembr 2000; 1508(1-2):235-51.

[25]

Lanigan RS. Final report on the safety assessment of cocoyl sarcosine, lauroyl sarcosine, myristoyl sarcosine, oleoyl sarcosine, stearoyl sarcosine, sodium cocoyl sarcosinate, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, ammonium cocoyl sarcosinate, and ammonium lauroyl sarcosinate. Int J Toxicol 2001; 20(Suppl 1):1-14.

[26]

Santos EP, Dutra AJB, Oliveira JF. The effect of jojoba oil on the surface properties of calcite and apatite aiming at their selective flotation. Int J Miner Process 2015;143:34-8.

[27]

Derhy M, Taha Y, El-Bahi A, Ait-Khouia Y, Benzaazoua M, Hakkou R. Selective flotation of calcite and dolomite from apatite using bio-based alternatives to conventional collectors: Castor and mustard oils. Miner Eng 2024;208:108597.

[28]

Ruan YY, Zhang ZQ, Luo HH, Xiao CQ, Zhou F, Chi R. Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector. Minerals 2017; 7(5):65.

[29]

El-bahi A, Taha Y, Ait-Khouia Y, Elghali A, Benzaazoua M. Enhancing sustainability in phosphate ore processing: Performance of frying oil as alternative flotation collector for carbonate removal. Int J Min Sci Technol 2024; 34(4):557-71.

[30]

Bhadani A, Kafle A, Ogura T, Akamatsu M, Sakai K, Sakai H, Abe M. Current perspective of sustainable surfactants based on renewable building blocks. Curr Opin Colloid Interface Sci 2020;45:124-35.

[31]

Liu SY, Han BS, Zhao TL. The effect of various surfactants on fatty acid for apatite flotation and their adsorption mechanism. Physicochem Probl Miner Process 2021;57:46-56.

[32]

Liu CY, Wang YZ, Chai CX, Ullah S, Zhang GJ, Xu BC, Liu HQ, Zhao L. Interfacial activities and aggregation behaviors of N-acyl amino acid surfactants derived from vegetable oils. Colloids Surf A Physicochem Eng Aspects 2018;559:54-9.

[33]

Cao QB, Zou H, Chen XM, Wen SM. Flotation selectivity of Nhexadecanoylglycine in the fluorapatite-dolomite system. Miner Eng 2019;131:353-62.

[34]

Abdel-Halim M, Abdel Khalek M, Zheng RJ, Gao ZY. Sodium Nlauroylsarcosinate (SNLS) as a selective collector for calcareous phosphate beneficiation. Minerals 2022; 12(7):829.

[35]

Karlkvist T. Selectivity in calcium mineral flotation - An analysis of novel and existing approaches. Doctoral dissertation. Luleå: Luleå University of Technology; 2017.

[36]

Morán MC, Pinazo A, Pérez L, Clapés P, Angelet M, García MT, Vinardell MP, Infante MR. “Green” amino acid-based surfactants. Green Chem 2004; 6 (5):233-40.

[37]

Kjellin M, Johansson I. Surfactants from Renewable Resources. Chichester: John Wiley & Sons Ltd; 2010.

[38]

Farid Z, Assimeddine M, Abdennouri M, Barka N, Sadiq M. Lecithin as an ecofriendly amphoteric collector foaming agent for the reverse flotation of phosphate ore. Chem Eng Res Des 2023;200:292-302.

[39]

Derqaoui M, Aarab I, Abidi A, Yaacoubi A, EL Amari K, Etahiri A, Baçaoui A. Review of the reagents used in the direct flotation of phosphate ores. Arab J Geosci 2021; 15(1):49.

[40]

Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ. Nomenclature of the apatite supergroup minerals. Ejm 2010; 22(2):163-79.

[41]

Klein C, Dutrow B. Manual de Ciência dos Minerais. Lisboa: Grupo Editorial Record; 2011.

[42]

Simukanga S, Lombe WC. Electrochemical properties of apatite and other minerals of Zambian phosphate ores in aqueous solution. Fertil Res 1995; 41 (2):159-66.

[43]

Food and Agriculture Organization of the United Nations. Use of phosphate rocks for sustainable agriculture. Rome: FAO; 2004.

[44]

Government of India, Ministry of Mines, Indian Bureau of Mines. Indian Minerals Yearbook 2012 - Apatite and Rock Phosphate. 51st ed. 2012.

[45]

Abouzeid AZM, El-Jallad IS, Orphy MK. Calcareous Phosphates and their calcined products. Miner Sci Eng 1980;12:73-83.

[46]

Abouzeid AZM, Negm AT, Elgillani DA. Upgrading of calcareous phosphate ores by flotation: effect of ore characteristics. Int J Miner Process 2009; 90(1- 4):81-9.

[47]

Fuerstenau, Pradip DW. Zeta potentials in the flotation of oxide and silicate minerals. Adv Colloid Interface Sci 2005;114:9-26.

[48]

Miller JD, Misra M. The hydrophobic character of semisoluble salt minerals with oleate as collector. In: MINTEK 50 International Conference on Recent Advances in Mineral Science and Technology; Johannesburg: The South African Council; 1984.p.259-67.

[49]

Vučinić DR, Radulović DS, Deušić . Electrokinetic properties of hydroxyapatite under flotation conditions. J Colloid Interface Sci 2010; 343 (1):239-45.

[50]

Chaïrat C, Oelkers EH, Schott J, Lartigue JE. Fluorapatite surface composition in aqueous solution deduced from potentiometric, electrokinetic, and solubility measurements, and spectroscopic observations. Geochim Cosmochim Acta 2007; 71(24):5888-900.

[51]

Nduwa-Mushidi J, Anderson CG. Surface chemistry and flotation behaviors of monazite-apatite-ilmenite-quartz-rutile-zircon with octanohydroxamic acid. J Sustain Metall 2017; 3(1):62-72.

[52]

Owens CL, Nash GR, Hadler K, Fitzpatrick RS, Anderson CG, Wall F. Apatite enrichment by rare earth elements: A review of the effects of surface properties. Adv Colloid Interface Sci 2019;265:14-28.

[53]

Somasundaran P. Zeta potential of apatite in aqueous solutions and its change during equilibration. J Colloid Interface Sci 1968; 27(4):659-66.

[54]

Hayek E, Müllner F, Koller K. Zur Kenntnis des Hydroxyapatits Monatsh Chem 1951;82:959-69.

[55]

Finkelstein NP. Review of interactions in flotation of sparingly soluble calcium minerals with anionic collectors. Trans Inst Min Metall 1989; C98:157-77.

[56]

Mishra SK. The electrokinetics of apatite and calcite in inorganic electrolyte environment. Int J Miner Process 1978; 5(1):69-83.

[57]

Amankonah JO, Somasundaran P. Effects of dissolved mineral species on the electrokinetic behavior of calcite and apatite. Colloids Surf 1985;15:335-53.

[58]

Hu YH, Chi R, Xu ZH. Solution chemistry study of salt-type mineral flotation systems: Role of inorganic dispersants. Ind Eng Chem Res 2003; 42 (8):1641-7.

[59]

Perrone J, Fourest B, Giffaut E. Surface characterization of synthetic and mineral carbonate fluoroapatites. J Colloid Interface Sci 2002; 249(2):441-52.

[60]

Cheng R, Li C, Liu X, Deng S. Synergism of octane phenol polyoxyethylene-10 and oleic acid in apatite flotation. Physicochem Prob Miner Process 2017; 53 (2):1214-27.

[61]

Evangelista A, de Carvalho J,Roberto Gomes Brandão P, Bicalho Henriques A, Silva de Oliveira P, Zanoni Lopes Cançado R, Rodrigues da Silva G. Selective flotation of apatite from micaceous minerals using patauá palm tree oil collector. Miner Eng 2020;156:106474.

[62]

Rao KH, Antti BM, Forssberg E. Mechanism of oleate interaction on salt-type minerals, Part II. Adsorption and electrokinetic studies. Int J Miner Process 1990;28:59-79.

[63]

de Oliveira P, Mansur H, Mansur A, da Silva G, Clark Peres AE. Apatite flotation using pataua palm tree oil as collector. J Mater Res Technol 2019; 8 (5):4612-9.

[64]

Cao QB, Cheng JH, Wen SM, Li CX, Bai SJ, Liu D. A mixed collector system for phosphate flotation. Miner Eng 2015;78:114-21.

[65]

Zou H, Cao QB, Liu DW, Chen XM, Jiao Y. Flotation features of fluorapatite with ricinoleic acid: The role of hydrogen bonds between collectors. Chem Pap 2021; 75(5):1949-58.

[66]

Henrique Santos L,Mércia Alves Santos A, Fernandes de Magalhães L, Fonseca de Souza T, Rodrigues da Silva G, Peres AEC. Synergetic effects of fatty acids in Amazon oil-based collectors for phosphate flotation. Miner Eng 2023;191:107932.

[67]

Agarwal S, Arya D, Khan S. Comparative fatty acid and trace elemental analysis identified the best raw material of jojoba (Simmondsia chinensis) for commercial applications. Ann Agric Sci 2018; 63(1):37-45.

[68]

Choo WS, Birch J, Dufour JP. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J Food Compos Anal 2007; 20(3-4):202-11.

[69]

Mubinov AR, Avdeeva EV, Kurkin VA, Latypova GM, Farkhutdinov RR, Kataev VA, Ryazanova TK. Fatty acid profile and antioxidant activity of nigella sativa fatty oil. Pharm Chem J 2021; 55(8):798-802.

[70]

Alves AQ, da Silva VA, Jr GA, Silva MS, de Oliveira GG, Bastos IVGA, de Castro Neto AG, Alves AJ. The fatty acid composition of vegetable oils and their potential use in wound care. Adv Skin Wound Care 2019; 32(8):1-8.

[71]

Anneken DJ, Both S, Christoph R, Fieg G, Steinberner U, Westfechtel A. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 2006.

[72]

Holmberg K, Jönsson B, Kronberg B, Lindman B. Surfactants and Polymers in Aqueous Solution. 2nd ed. Chichester: Wiley; 2002.

[73]

Hoerr CW, Sedgwick RS, Ralston AW. The solubilities of the normal saturated fatty acids. J Org Chem 1946; 11(5):603-9.

[74]

SCBT. Ricinoleic acid 2024; 2024.

[75]

Sigma-Aldrich. Sigma-Aldrich: cis-11-eicosenoic acid. A 2024.

[76]

Santos LH, Otávio dos Santos G, Fernandes de Magalhães L, Rodrigues da Silva G, Eduardo Clark Peres A. Application of andiroba oil as a novel collector in apatite flotation. Miner Eng 2022;185:107678.

[77]

Ding Z, Li J, Bi YX, Yu P, Dai HX, Wen SM, Bai SJ. The adsorption mechanism of synergic reagents and its effect on apatite flotation in oleamide-sodium dodecyl benzene sulfonate (SDBS) system. Miner Eng 2021;170:107070.

[78]

Al Ghatta A, Aravenas RC, Wu YJ, Perry JM, Lemus J, Hallett JP. New biobased sulfonated anionic surfactants based on the esterification of furoic acid and fatty alcohols: A green solution for the replacement of oil derivative surfactants with superior proprieties. ACS Sustain Chem Eng 2022; 10 (27):8846-55.

[79]

Mudge SM, DeLeo PC. Estimating fatty alcohol contributions to the environment from laundry and personal care products using a market forensics approach. Environ Sci: Processes Impacts 2014; 16(1):74-80.

[80]

Oliveira MS, Santana RC, Ataíde CH, Barrozo MAS. Recovery of apatite from flotation tailings. Sep Purif Technol 2011; 79(1):79-84.

[81]

Gorochovceva N, Klingberg A, Lannefors J. Development of anionic collectors for direct flotation of apatite from complex siliceous ores with a focus on sustainability. In: XXVIIIMPC. Santiago Chile: SME; 2014.p.68-78.

[82]

Houot R, Joussemet R, Tracez J, Brouard R. Selective flotation of phosphatic ores having a siliceous and/or a carbonated gangue. Int J Miner Process 1985; 14(4):245-64.

[83]

Severov VV, Filippova IV, Filippov LO. Use of fatty acids with an ethoxylated alcohol for apatite flotation from old fine-grained tailings. Miner Eng 2022;188:107832.

[84]

Abdel-Halim MM, Fan RH, Abdel Khalek MA, Zheng RJ, Xu SH, Gao ZY. Apatite-calcite flotation separation using sodium N-lauroylsarcosinate as a selective collector. Minerals 2023; 13(7):970.

[85]

Yu LM, Yu P, Bai SJ. A critical review on the flotation reagents for phosphate ore beneficiation. Minerals 2024; 14(8):828.

[86]

Xing YW, Xu MD, Gui XH, Cao YJ, Babel B, Rudolph M, Weber S, Kappl M, Butt HJ. The application of atomic force microscopy in mineral flotation. Adv Colloid Interface Sci 2018;256:373-92.

[87]

Miller JD, Kellar JJ. Quantitative in-situ analysis of collector adsorption reactions by FTIR internal reflection spectroscopy. In: Challengesin Mineral Processing. Littleton: SME/AIME; 1989.p.109-29.

[88]

Mikhlin Y. X-ray photoelectron spectroscopy in mineral processing studies. Appl Sci 2020; 10(15):5138.

[89]

St C, Smart R, Gerson AR, Biesinger MC, Hart BR. The development of statistical ToF-SIMS applied to minerals recovery by froth flotation. Surf Interface Anal 2017; 49(13):1387-96.

[90]

Paiva PRP, Monte MBM, Simão RA, Gaspar JC. In situ AFM study of potassium oleate adsorption and calcium precipitate formation on an apatite surface. Miner Eng 2011; 24(5):387-95.

[91]

Lu YQ, Miller JD. Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J Colloid Interface Sci 2002; 256(1):41-52.

[92]

Brandão PRG. A oxidação do oleato durante a flotação de oxi-minerais e suas consequências. In: Encontro Nacional de Tratamento de Minérios. São Paulo: APEMI&ABM&Departamento de Engenharia de Minas da Escola Politécnica da USP; 1988.p.324-36.

[93]

Pratt DA, Mills JH, Porter NA. Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. J Am Chem Soc 2003; 125(19):5801-10.

[94]

Pratt DA, Tallman KA, Porter NA. Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res 2011; 44(6):458-67.

[95]

Chen HJ, Cao PR, Li B, Sun DW, Wang Y, Li JW, Liu YF. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS. Food Chem 2017;221:1434-41.

[96]

Siwayanan P, Ban ZH, Zhang XC, Parthiban A. a-sulfo fatty methyl ester sulfonate: a review on chemistry, processing technologies, performance, and applications in laundry detergents. J Surfactants Deterg 2021; 24(3):385-99.

[97]

López EO, Bernardo PL, Checca NR, Rossi AL, Mello A, Ellis DE, Rossi AM, Terra J. Hydroxyapatite and lead-substituted hydroxyapatite near-surface structures: novel modelling of photoemission lines from X-ray photoelectron spectra. Appl Surf Sci 2022;571:151310.

[98]

Mkhonto D, Ngoepe PE, Cooper TG, de Leeuw NH. A computer modelling study of the interaction of organic adsorbates with fluorapatite surfaces. Phys Chem Miner 2006; 33(5):314-31.

[99]

Nan N, Zhu YM, Han YX, Liu J. Molecular modeling of interactions between N- (carboxymethyl)-N-tetradecylglycine and fluorapatite. Minerals 2019; 9 (5):278.

[100]

Shao X, Jiang CL, Parekh BK. Enhanced flotation separation of phosphate and dolomite using a new amphoteric collector. Min Metall Explor 1998; 15 (2):11-4.

[101]

Rao KH. Mixed anionic/non-ionic collectors in phosphate gangue flotation from magnetite fines. Open Miner Process J 2011; 4(1):14-24.

[102]

Yoshida Y, Ito A, Murakami M, Murakami T, Fujimoto H, Takeda K, Suzuki S, Hori M. Determination of nonylphenol ethoxylates and octylphenol ethoxylates in environmental samples using 13C-labeled surrogate compounds. J Air Waste Manag Assoc 2007; 57(10):1164-71.

[103]

Acir IH, Guenther K. Endocrine-disrupting metabolites of alkylphenol ethoxylates-A critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci Total Environ 2018;635:1530-46.

[104]

McLaren DEK, Rawlins AJ. Occurrence of alkylphenols and alkylphenol ethoxylates in North Sea sediment samples collected across oil and gas fields. Mar Pollut Bull 2022;178:113655.

[105]

You XF, He M, Zhang W, Wei HB, Lyu XJ, He QQ, Li L. Molecular dynamics simulations of nonylphenol ethoxylate on the Hatcher model of subbituminous coal surface. Powder Technol 2018;332:323-30.

[106]

Jawaid J, Hussain A, Khan AM. Exploring the effects of interactions between nonylphenol ethoxylate and ionic surfactants on interfacial and foaming properties. J Mol Liq 2024;394:123673.

[107]

Mallerman J, Itria R, Babay P, Saparrat M, Levin L. Biodegradation of nonylphenol polyethoxylates by litter-basidiomycetous fungi. J Environ Chem Eng 2019; 7(5):103316.

[108]

Li YX, Sun YQ, Zhou JJ, Di Serio M, Zhang Y, Sun JY, Liang HB, Liu YQ. Physicochemical and application properties of C13-branched alcohol ethoxylates (BAEO) with different ethylene oxide addition numbers. J Mol Liq 2022;355:118985.

[109]

Leal Filho LS. A Seletividade na Separação Apatite/Silicatos por Flotação: Subsídios para a Solução de Problemas Tipicamente Brasileiros. Tese de Livredocência. São Paulo: Universidade de São Paulo; 1999.

[110]

Wang HJ, Yi AF, Yu HM. Application of reagent JZQ - F7 prepared with catering waste oil to the low grade phosphate rock flotation. Adv Mater Res 2013;699:11-6.

[111]

Brandao PRG, Caires LG, Queiroz DSB. Vegetable lipid oil-based collectors in the flotation of apatite ores. Miner Eng 1994; 7(7):917-25.

[112]

Bordes R, Holmberg K. Amino acid-based surfactants-do they deserve more attention? Adv Colloid Interface Sci 2015;222:79-91.

[113]

Guimarães RC, Araujo AC, Peres AEC. Reagents in igneous phosphate ores flotation. Miner Eng 2005; 18(2):199-204.

AI Summary AI Mindmap
PDF (3335KB)

879

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/