Fluid Dynamics and Infrared Stealth of Marine IRS Devices: A Review
Yitao Zou , Zhenrong Liu , Xin Qiao , Yingying Jiang , Hong Shi , Yanlong Jiang
International Journal of Mechanical System Dynamics ›› 2025, Vol. 5 ›› Issue (2) : 179 -200.
Fluid Dynamics and Infrared Stealth of Marine IRS Devices: A Review
Infrared suppression (IRS) devices for naval ships play a crucial role in reducing the infrared radiation signature of high-temperature exhaust, thereby enhancing the survivability of ships against infrared-guided weapons. This paper provides a comprehensive review of recent advancements in the design and optimization of IRS devices. The primary research problem of the devices is the need to effectively suppress infrared radiation from ship exhaust gases, which are the main targets of infrared-guided missiles. To achieve this, the paper analyzes the infrared characteristics of exhaust systems from the perspectives of fluid dynamics, radiation sources, and radiation transmission, with a detailed explanation of the associated physical mechanisms and computational methods. The working principles and structural features of commonly used IRS devices, such as eductor/diffuser (E/D) devices and DRES-Ball devices, are introduced, with a focus on the design and optimization of key components, including nozzles, mixing diffusers, and optical blocking obstacles. Advanced suppression technologies, such as water injection and aerosol particle dispersion, are also discussed as auxiliary methods to enhance the infrared stealth capabilities. The review highlights that the advanced cooling mechanisms and optical property modifications can significantly reduce the infrared radiation of exhaust plumes. Furthermore, the paper identifies several challenges and future research directions, including the performance impacts of multi-device coordinated operation, the development of intelligent adaptive control systems, and the pursuit of lightweight and modular designs to meet the high mobility requirements of modern naval ships. This review aims to provide theoretical support and technical guidance for the practical design of IRS devices, offering valuable insights for the development of next-generation infrared stealth technologies for naval vessels.
exhaust system / fluid dynamics / infrared radiation / IRS device
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
AGM-114 Hellfire Missile Ultimate Guide: Capabilities, Variants, and Cost. The Defense Post (2024), https://thedefensepost.com/2021/03/22/agm-114-hellfire-missile. |
| [9] |
The Sidewinder Story-The Evolution of the AIM-9 Missile. Air Power Australia (2024), https://ausairpower.net/TE-Sidewinder-94.html. |
| [10] |
Norway Donates Hellfire Missiles and Night Vision Equipment to Ukraine. Army Recognition (2025), https://www.armyrecognition.com/news/army-news/2022/norway-donates-hellfire-missiles-and-night-vision-equipment-to-ukraine. |
| [11] |
Four Stealthy AGM-158C Long-Range Anti-Dhip Missiles Flew Together in “Historic” Test. The War Zone (2024), https://www.twz.com/air/four-stealthy-agm-158c-long-range-anti-ship-missiles-flew-together-in-historic-test. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Ansys Inc (Release 2020 R1). Ansys Fluent Theory Guide (2020). |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
2025 The Author(s). International Journal of Mechanical System Dynamics published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
/
| 〈 |
|
〉 |