A method for dynamic parameter identification of an industrial robot based on frequency response function

Bo Li, Wei Zhao, Yunfei Miao, Wei Tian, Wenhe Liao

International Journal of Mechanical System Dynamics ›› 2024, Vol. 4 ›› Issue (4) : 461-471.

PDF
International Journal of Mechanical System Dynamics ›› 2024, Vol. 4 ›› Issue (4) : 461-471. DOI: 10.1002/msd2.12131
RESEARCH ARTICLE

A method for dynamic parameter identification of an industrial robot based on frequency response function

Author information +
History +

Abstract

Having accurate values of the dynamic parameters is necessary to characterize the dynamic behaviors of mechanical systems and for the prediction of their responses. To accurately describe the dynamic characteristics of industrial robots (IRs), a new method for dynamic parameter identification is proposed in this study with the goal of developing a real IR dynamics model that combines the multibody system transfer matrix method (MSTMM) and the nondominated sorting genetic algorithm-II (NSGA-II). First, the multibody dynamics model of an IR is developed using the MSTMM, by which its frequency response function (FRF) is calculated numerically. Then, the experimental modal analysis is conducted to measure the IR’s actual FRF. Finally, the objective function of the minimum errors between the calculated and measured eigenfrequencies and FRFs are constructed to identify the dynamic parameters of the IR by the NSGA-II algorithm. The simulated and experimental results illustrate the effectiveness of the methodology presented in this paper, which provides an alternative to the identification of IR dynamic parameters.

Keywords

industrial robots / multibody system transfer matrix method / robotic machining / dynamic parameter identification

Cite this article

Download citation ▾
Bo Li, Wei Zhao, Yunfei Miao, Wei Tian, Wenhe Liao. A method for dynamic parameter identification of an industrial robot based on frequency response function. International Journal of Mechanical System Dynamics, 2024, 4(4): 461‒471 https://doi.org/10.1002/msd2.12131

References

[1]
Alipour K, Robat AB, Tarvirdizadeh B. Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip. Mech Mach Theory. 2019;138:16-37.
CrossRef Google scholar
[2]
Lin Y, Zhao H, Ding H. Posture optimization methodology of 6R industrial robots for machining using performance evaluation indexes. Robot Comput Integr Manuf. 2017;48:59-72.
CrossRef Google scholar
[3]
Mousavi S, Gagnol V, Bouzgarrou BC, Ray P. Dynamic modeling and stability prediction in robotic machining. Int J Adv Manuf Technol. 2017;88:3053-3065.
CrossRef Google scholar
[4]
Armstrong B, Khatib O, Burdick J Explicit dynamic model and inertial parameters of the PUMA 560 arm. In: Proceedings of the IEEE International Conference on Robotics and Automation. 1986;510-518.
CrossRef Google scholar
[5]
Huang Y, Ke J, Zhang X, Ota J. Dynamic parameter identification of serial robots using a hybrid approach. IEEE Trans Robot. 2023;39(2):1607-1621.
CrossRef Google scholar
[6]
Jia J, Zhang M, Li C, Gao C, Zang X, Zhao J. Improved dynamic parameter identification method relying on proprioception for manipulators. Nonlinear Dyn. 2021;105:1373-1388.
CrossRef Google scholar
[7]
Xiong G, Ding Y, Zhu L. Stiffness-based pose optimization of an industrial robot for five-axis milling. Robot Comput Integr Manuf. 2019;55:19-28.
CrossRef Google scholar
[8]
Garnier S, Subrin K, Waiyagan K. Modelling of robotic drilling. Procedia CIRP. 2017;58:416-421.
CrossRef Google scholar
[9]
Qu W, Hou P, Yang G, Huang G, Yin F, Shi X. Research on the stiffness performance for robot machining systems. Acta Aeronaut Astronaut Sin. 2013;34:2823-2832.
[10]
Bu Y, Liao W, Tian W, Zhang J, Zhang L. Stiffness analysis and optimization in robotic drilling application. Precis Eng. 2017;49:388-400.
CrossRef Google scholar
[11]
Huynh HN, Assadi H, Dambly V, Riviere-Lorphevre E, Verlinden O. Direct method for updating flexible multibody systems applied to a milling robot. Robot Comput Integr Manuf. 2020a;68:102049.
CrossRef Google scholar
[12]
Huynh HN, Assadi H, Riviere-Lorphevre E, Verlinden O, Ahmadi K. Modelling the dynamics of industrial robots for milling operations. Robot Comput Integr Manuf. 2020b;61:101852.101851-101852.101816.
CrossRef Google scholar
[13]
Rhode S, Usevich K, Markovsky I, Gauterin F. A recursive restricted total least-squares algorithm. IEEE Trans Signal Process. 2014;62:5652-5662.
CrossRef Google scholar
[14]
Gautier M, Poignet P. Extended Kalman filtering and weighted least squares dynamic identification of robot. Control Eng Pract. 2001;9(12):1361-1372.
CrossRef Google scholar
[15]
Urrea C, Pascal J. Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Comput Electric Eng. 2018;67:791-806.
CrossRef Google scholar
[16]
Urrea C, Pascal J. Parameter identification methods for real redundant manipulators. J Appl Res Technol. 2017;15:320-331.
CrossRef Google scholar
[17]
Yang C, Jiang Y, He W, Na J, Li Z, Xu B. Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans Ind Electron. 2018;65(10):8112-8123.
CrossRef Google scholar
[18]
Ding L, Shan W, Zhou C, Xi W. Dynamic identification for industrial robot manipulators based on glowworm optimization algorithm. Intell Robot Appl. 2017:789-799.
CrossRef Google scholar
[19]
Zhang B, Wu J, Wang L, Yu Z. Accurate dynamic modeling and control parameters design of an industrial hybrid spray-painting robot. Robot Comput Integr Manuf. 2020;63:101923.
CrossRef Google scholar
[20]
Li X, Sun H, Liao L, Song J. Simulation and comparison research of Lagrange and Kane dynamics modeling for the 4-DOF modular industrial robot. Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering. 2005. pp. 251-254.
[21]
Li X, Sun H, Liao L, Song J. Modeling and simulation research of Kane dynamics method for the 5-DOF modular industrial robot. Proceedings of the International Conference on Information System and Artificial Intelligence (ISAI). 2016;124-128.
CrossRef Google scholar
[22]
Rui X, Wang G, Zhang J. Transfer Matrix Method for Multibody Systems: Theory and Applications. John Wiley &Sons;2018.
[23]
Zhang X, Chen D, Luo Y, Lin Y, Liu J, Pan G. Vortex-induced vibration characteristics of rigidly connected four-cylinder system and nonlinear energy sinks for vibration suppression. Phys Fluids. 2024;36(6):065120.
CrossRef Google scholar
[24]
Chen D, Xu R, Lin Y, Gao N, Pan G, Pier M. Nonlinear energy sink-based study on vortex-induced vibration and control of foil-cylinder coupled structure. Ocean Eng. 2023;286:115623.
CrossRef Google scholar
[25]
Zhang X, Mills JK, Cleghorn WL. Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links. J Intell Robot Syst. 2007;50:323-340.
CrossRef Google scholar
[26]
Zhang X, Sørensen R, Iversen MR, Li H. Computationally efficient dynamic modeling of robot manipulators with multiple flexible-links using acceleration-based discrete time transfer matrix method. Robot Comput Integr Manuf. 2018;49:181-193.
CrossRef Google scholar
[27]
Yang X, Zhou Z, Li L, Zhang X. Collaborative robot dynamics with physical human-robot interaction and parameter identification with PINN. Mech Mach Theory. 2023;189:105439.
CrossRef Google scholar
[28]
Lu H, Rui X, Zhang X. Transfer matrix method for linear vibration analysis of flexible multibody systems. J Sound Vib. 2023;549:117565.
CrossRef Google scholar
[29]
Cui G, Li B, Tian W, Liao W, Zhao W. Dynamic modeling and vibration prediction of an industrial robot in manufacturing. Appl Math Model. 2022;105:114-136.
CrossRef Google scholar
[30]
Brandt A. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures. John Wiley &Sons;2011.

RIGHTS & PERMISSIONS

2024 2024 The Author(s). International Journal of Mechanical System Dynamics published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.
PDF

Accesses

Citations

Detail

Sections
Recommended

/