Influence of temperature and internal leakage on magnetorheological damper

Hongtao Zhu , Xiaoting Rui , FuFeng Yang , Wei Zhu , Min Jiang

International Journal of Mechanical System Dynamics ›› 2024, Vol. 4 ›› Issue (4) : 487 -496.

PDF (4313KB)
International Journal of Mechanical System Dynamics ›› 2024, Vol. 4 ›› Issue (4) : 487 -496. DOI: 10.1002/msd2.12123
RESEARCH ARTICLE

Influence of temperature and internal leakage on magnetorheological damper

Author information +
History +
PDF (4313KB)

Abstract

To study the influence of temperature and internal leakage on the performance of magnetorheological (MR) damper, a single-rod straight-cylinder MR damper with an inside temperature sensor is designed in this study. A unified model for MR damper is given, and a new two-step parameters identification method is proposed to determine model parameters. The experiment, in which the damper is heated by long-time displacement excitation, is designed to study the effect of temperature and internal leakage. The influence mechanism of temperature and internal leakage on MR damper is analyzed through theoretical derivation and experimental results in this study.

Keywords

MR damper / normalized Bouc-Wen model / temperature-dependent model / internal leakage

Cite this article

Download citation ▾
Hongtao Zhu, Xiaoting Rui, FuFeng Yang, Wei Zhu, Min Jiang. Influence of temperature and internal leakage on magnetorheological damper. International Journal of Mechanical System Dynamics, 2024, 4(4): 487-496 DOI:10.1002/msd2.12123

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han W, Wang S, Rui X, Dong Y, Choi H. Core/shell magnetite/copolymer composite nanoparticles enabling highly stable magnetorheological response. Int J Mech Syst Dyn. 2022;2(2):155-164.

[2]

Zhu X, Jing X, Cheng L. Magnetorheological fluid dampers: a review on structure design and analysis. J Intell Mater Syst Struct. 2012;23(8):839-873.

[3]

Zhang G, Chen J, Zhang Z, et al. Analysis of magnetorheological clutch with double cup-shaped gap excited by Halbach array based on finite element method and experiment. Smart Mater Struct. 2022;31(7):075008.

[4]

Nguyen ND, Le-Duc T, Hiep LD, Nguyen QH. Development of a new magnetorheological fluid-based brake with multiple coils placed on the side housings. J Intell Mater Syst Struct. 2019;30(5):734-748.

[5]

Pei P, Peng Y. Constitutive modeling of magnetorheological fluids: a review. J Magn Magn Mater. 2022;550:169076.

[6]

Sahin H, Wang XJ, Gordaninejad F. A new model for yield stress of magneto-rheological greases/gels under combined effects of magnetic field and temperature. Paper Presented at: Conference on Active and Passive Smart Structures and Integrated Systems; 2009.

[7]

Bahiuddin I, Mazlan SA, Shapiai I, Imaduddin F, Ubaidillah , Choi SB. Constitutive models of magnetorheological fluids having temperature-dependent prediction parameter. Smart Mater Struct. 2018;27(9):095001.

[8]

Li H, Jönkkäri I, Sarlin E, Chen F. Temperature effects and temperature-dependent constitutive model of magnetorheological fluids. Rheol Acta. 2021;60(11):719-728.

[9]

Shames IH. Elastic and Inelastic Stress Analysis. CRC Press;1997.

[10]

Carlson JD, Catanzarite DM, St. Clair KA. Commercial magneto-rheological fluid devices. Int J Modern Phys B. 1996;10(23N24):2857-2865.

[11]

Jiang M, Rui X, Yang F, Zhu W, Zhang Y. Multi-objective optimization design for a magnetorheological damper. J Intell Mater Syst Struct. 2022;33(1):33-45.

[12]

Stanway R, Sproston JL, El-Wahed AK. Applications of electro-rheological fluids in vibration control: a survey. Smart Mater Struct. 1996;5(4):464-482.

[13]

Wereley NM, Pang L, Kamath GM. Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J Intel Mater Syst Struct. 1998;9(8):642-649.

[14]

Gamota DR, Filisko FE. Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol. 1991;35(3):399-425.

[15]

Ismail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey. Arch Comput Methods Eng. 2009;16(2):161-188.

[16]

Zhu H, Rui X, Yang F, Zhu W, Wei M. An efficient parameters identification method of normalized Bouc-Wen model for MR damper. J Sound Vib. 2019;448:146-158.

[17]

Bai XXF, Li CX. Precise real-time hysteretic force tracking of magnetorheological damper. Smart Mater Struct. 2020;29(10):104002.

[18]

Batterbee D, Sims ND. Temperature sensitive controller performance of MR dampers. J Intell Mater Syst Struct. 2009;20(3):297-309.

[19]

Priya CB, Gopalakrishnan N. Temperature dependent modelling of magnetorheological (MR) dampers using support vector regression. Smart Mater Struct. 2019;28(2):025021.

[20]

Fu Z, Gan X, Liu X, Jian Z, Hu H. Effect of temperature on the mechanics of magnetorheological fluid damper. J Chin Inst Eng. 2022;45(2):97-108.

RIGHTS & PERMISSIONS

2024 The Author(s). International Journal of Mechanical System Dynamics published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.

AI Summary AI Mindmap
PDF (4313KB)

479

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/