Bidirectional energy-controlled piezoelectric shunt damping technology and its vibration attenuation performance

Yipeng Wu , Quan Yuan , Kaibin Ren , Xin Shen , Hui Shen , Adrien Badel , Hongli Ji , Jinhao Qiu

International Journal of Mechanical System Dynamics ›› 2024, Vol. 4 ›› Issue (1) : 63 -76.

PDF
International Journal of Mechanical System Dynamics ›› 2024, Vol. 4 ›› Issue (1) : 63 -76. DOI: 10.1002/msd2.12101
RESEARCH ARTICLE

Bidirectional energy-controlled piezoelectric shunt damping technology and its vibration attenuation performance

Author information +
History +
PDF

Abstract

Piezoelectric material-based semi-active vibration control systems may effectively suppress vibration amplitude without any external power supply, or even harvest electrical energy. This bidirectional electrical energy control phenomenon is theoretically introduced and validated in this paper. A flyback transformer-based switching piezoelectric shunt circuit that can extract energy from or inject energy into piezoelectric elements is proposed. The analytical expressions of the controlled energy and the corresponding vibration attenuation are therefore derived for a classical electromechanical cantilever beam. Theoretical predictions validated by the experimental results show that the structure vibration attenuation can be tuned from −5 to −25 dB under the given electrical quality factor of the circuit and figure of merit of the electromechanical structure, and the consumed power is in the range of −13 to 25mW, which is a good theoretical basis for the development of self-sensing, self-adapting, and self-powered piezoelectric vibration control systems.

Keywords

vibration control / piezoelectric / shunt damping / electromechanical energy

Cite this article

Download citation ▾
Yipeng Wu, Quan Yuan, Kaibin Ren, Xin Shen, Hui Shen, Adrien Badel, Hongli Ji, Jinhao Qiu. Bidirectional energy-controlled piezoelectric shunt damping technology and its vibration attenuation performance. International Journal of Mechanical System Dynamics, 2024, 4(1): 63-76 DOI:10.1002/msd2.12101

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang P, Rui X, Liu F, et al. Generation mechanism and control of high-frequency vibration for tracked vehicles. Int J Mech Syst Dyn. 2023;3:146-161.

[2]

Bai X, He G. Pseudo-active actuators: a concept analysis. Int J Mech Syst Dyn. 2021;1:230-247.

[3]

Hao Y, Shen Y, Wang J, Yang S. A piecewise negative stiffness mechanism and its application in dynamic vibration absorber. Int J Mech Syst Dyn. 2021;1:173-181.

[4]

Li J, Zhang L, Li S, Mao Q, Mao Y. Active disturbance rejection control for piezoelectric smart structures: a review. Machines. 2023;11(2):174.

[5]

Callipari F, Sabatini M, Angeletti F, Iannelli P, Gasbarri P. Active vibration control of large space structures: modelling and experimental testing of offset piezoelectric stack actuators. Acta Astronaut. 2022;198:733-745.

[6]

Long Z, Pan Q, Li P, Chung HSH, Yang Z. Direct adaptive SSDV circuit for piezoelectric shunt damping. IEEE Trans Ind Electron. 2023;70(4):4098-4107.

[7]

Gripp JAB, Rade DA. Vibration and noise control using shunted piezoelectric transducers: a review. Mech Syst Sig Process. 2018;112:359-383.

[8]

Chatziathanasiou GM, Chrysochoidis NA, Saravanos DA. A semiactive shunted piezoelectric tuned mass damper for robust vibration control. J Vib Control. 2021;28(21-22):2969-2983.

[9]

Wu Y, Liu X, Badel A, Ji H, Qiu J. Semi-active piezoelectric structural damping adjustment and enhancement by synchronized switching on energy injection technique. J Sound Vib. 2022;527:116866.

[10]

Corr LR, Clark WW. Energy dissipation analysis of piezoceramic semiactive vibration control. J Intell Mater Syst Struct. 2001;12(11):729-736.

[11]

Richard C, Guyomar D, Audigier D, Ching G. Semi-passive damping using continuous switching of a piezoelectric device. Proceeding of the Smart Structures and Materials 1999: Passive Damping and Isolation. SPIE;1999;3672:104-111.

[12]

Qi R, Wang L, Jin J, Yuan L, Zhang D, Ge Y. Enhanced semi-active piezoelectric vibration control method with shunt circuit by energy dissipations switching. Mech Syst Signal Process. 2023;201:110671.

[13]

Asanuma H, Komatsuzaki T. Nonlinear piezoelectricity and damping in partially-covered piezoelectric cantilever with self-sensing synchronized switch damping on inductor circuit. Mech Syst Sig Process. 2020;144:106867.

[14]

Lefeuvre E, Badel A, Petit L, Richard C, Guyomar D. Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. J Intell Mater Syst Struct. 2006;17(8-9):653-660.

[15]

Ji H, Qiu J, Zhang J, Nie H, Cheng L. Semi-active vibration control based on unsymmetrical synchronized switching damping: circuit design. J Intell Mater Syst Struct. 2016;27(8):1106-1120.

[16]

Neubauer M, Han X, Wallaschek J. On the maximum damping performance of piezoelectric switching techniques. J Intell Mater Syst Struct. 2012;24(6):717-728.

[17]

Badel A, Sebald G, Guyomar D, et al. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: towards wideband semi-active damping. J Acoust Soc Am. 2006;119(5):2815-2825.

[18]

Shen H, Ji H, Qiu J, et al. Self-powered semi-passive vibration damping system based on the self-sensing approach. J Sound Vib. 2021;512:116371.

[19]

Chen YY, Vasic D, Costa F, Lee CK, Wu WJ. Self-powered semipassive piezoelectric structural damping based on zero-velocity crossing detection. Smart Mater Struct. 2013;22:025029.

[20]

Zhang L, Li M, Deng P, Cheng W. Self-sensing synchronized switch damping based on zero-crossing detection with voltage decay compensation. Smart Mater Struct. 2023;32:045015.

[21]

Morel A, Brenes A, Gibus D, et al. A comparative study of electrical interfaces for tunable piezoelectric vibration energy harvesting. Smart Mater Struct. 2022;31:045016.

[22]

Zhao B, Wang J, Liao WH, Liang J. A bidirectional energy conversion circuit toward multifunctional piezoelectric energy harvesting and vibration excitation purposes. IEEE Trans Power Electron. 2021;36(11):12889-12897.

[23]

Wang T, Dupont J, Tang J. On integration of vibration suppression and energy harvesting through piezoelectric shunting with negative capacitance. IEEE/ASME Trans Mechatron. 2023;28(5):2621-2632.

[24]

Wu Y, Badel A, Formosa F, Liu W, Agbossou AE. Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. J Intell Mater Syst Struct. 2012;24(12):1445-1458.

[25]

Wu Y, Li S, Fan K, Ji H, Qiu J. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mech Syst Sig Process. 2022;162:108038.

[26]

Zhiyuan G, Yiru W, Muyao S, Xiaojin Z. Theoretical and experimental investigation study of discrete time rate‑dependent hysteresis modeling and adaptive vibration control for smart flexible beam with MFC actuators. Sens Actuat A. 2022;344:113738.

[27]

Zhang B, Li H, Zhou S, Liang J, Gao J, Yurchenko D. Modeling and analysis of a three-degree-of-freedom piezoelectric vibration energy harvester for broadening bandwidth. Mech Syst Sig Process. 2022;176:109169.

[28]

Arroyo E, Badel A, Formosa F, Wu Y, Qiu J. Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments. Sens Actuat A. 2012;183:148-156.

[29]

Wu Y, Badel A, Formosa F, Liu W, Agbossou AE. Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. J Intell Mater Syst Struct. 2013;24(12):1445-1458.

[30]

Shivashankar P, Gopalakrishnan S. Review on the use of piezoelectric materials for active vibration, noise, and flow control. Smart Mater Struct. 2020;29:053001.

[31]

Wu Y, Qiu J, Zhou S, Ji H, Chen Y, Li S. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl Energy. 2018;231:600-614.

[32]

Badel A, Lefeuvre E. Nonlinear conditioning circuits for piezoelectric energy harvesters. In: Blokhina E, Aroudi A, Alarcon E, Galayko D, eds. Nonlinearity in Energy Harvesting Systems: Micro-and Nanoscale Applications. Springer International Publishing;2016:321-359.

RIGHTS & PERMISSIONS

2024 The Authors. International Journal of Mechanical System Dynamics published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science and Technology.

AI Summary AI Mindmap
PDF

375

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/