Geomorphological perspective of geodiversity: A case study of Al-Zubaidat area, east of Misan Governorate (Iraq)

Bashar F. Maaroof , Hashim H. Kareem , Ban Al-Hasani , Iacopo Carnacina , Mawada Abdellatif , Nadhir Al-Ansari , Rayan G. Thannoun , Jaffar H. Al-Zubaydi , Varoujan K. Sissakian , Mohammed A. Al-Musawi , Raheem H. Al-Abdan , Jaafar Jotheri , Hussain M. Hussain , Manal Sh. Al-Kubaisi , Ahmed M. Hashoosh

International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (4) : 616 -637.

PDF
International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (4) :616 -637. DOI: 10.1016/j.ijgeop.2025.11.002
Original article
research-article

Geomorphological perspective of geodiversity: A case study of Al-Zubaidat area, east of Misan Governorate (Iraq)

Author information +
History +
PDF

Abstract

This research investigates the geodiversity of the AL-Zubaidat region in Southeastern Iraq, with a focus on its geomorphological and hydrological characteristics. This information helps re-searchers identify suitable locations for natural reserves, thereby enhancing the protection of Iraqi biodiversity. The region attracts eco-tourism visitors, beneϕιting the economy and provid-ing various scientiϕιc, cultural, educational, and aesthetic beneϕιts. This research employed the geoinformatics methodology for geospatial analysis, constructing a comprehensive geodatabase, categorizing spatial features through topographic, geological, and hydrological maps, and correlating data with satellite imagery and elevation models. Geodiversity was clas-siϕιed according to physical parameters and international criteria, with the ϕιnal classiϕιcation attributes formulated utilizing maps, ϕιeld photographs, and geodatabases. The research em-ployed speciϕιc parameters to analyze the geomorphometric and slope diversity of the Al-Zubaidat area watersheds. The study area in Al-Zubaidat comprises dome-shaped hills, ter-tiary geological formations, valleys, and badlands. The area encompasses 782.308 km2 and shall consist of three principal watersheds (Al-Sharhani, Abu-Ghraibat, and Al-Shakak), as well as 12 sub-watersheds. The watershed perimeter is correlated with the circulating ratio, form factor, and elongation ratio, with larger perimeters generally indicating larger basin areas. The region encompasses low-slope terrain, with elevated slope values in the northern sections, especially in the headwaters. Geoheritage, geodiversity, geoconservation, and geoparks can facilitate sus-tainable development, promote healthy lifestyles, and foster cultural diversity. These initiatives are crucial for policymakers and regional stakeholders in semi-arid and developing regions, particularly in Southeast Asia, to enhance income and protect vulnerable natural resources.

Keywords

geomorphology / geodiversity / geosite / geoheritage / AL-Zubaidat area

Cite this article

Download citation ▾
Bashar F. Maaroof, Hashim H. Kareem, Ban Al-Hasani, Iacopo Carnacina, Mawada Abdellatif, Nadhir Al-Ansari, Rayan G. Thannoun, Jaffar H. Al-Zubaydi, Varoujan K. Sissakian, Mohammed A. Al-Musawi, Raheem H. Al-Abdan, Jaafar Jotheri, Hussain M. Hussain, Manal Sh. Al-Kubaisi, Ahmed M. Hashoosh. Geomorphological perspective of geodiversity: A case study of Al-Zubaidat area, east of Misan Governorate (Iraq). International Journal of Geoheritage and Parks, 2025, 13(4): 616-637 DOI:10.1016/j.ijgeop.2025.11.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abboud I. A., & Nofal R. A. (2017). Morphometric analysis of Wadi Khumal basin, western coast of Saudi Arabia, using remote sensing and GIS techniques. Journal of African Earth Sciences, 126, 58-74. https://doi.org/10.1016/j.jafrearsci.2016.11.024.

[2]

Agha O. M. A. M., & Şarlak N. (2016). Spatial and temporal patterns of climate variables in Iraq. Arabian Journal of Geosciences, 9(4), 302. https://doi.org/10.1007/s12517-016-2324-y.

[3]

Alexandrowicz Z., & Margielewski W. (2010). Impact of mass movements on geo-and biodiversity in the polish outer (flysch) Carpathians. Geomorphology, 123(3-4), 290-304. https://doi.org/10.1016/j.geomorph.2010.07.020.

[4]

Al-Hasani B., Abdellatif M., Carnacina I., Harris C., Al-Quraishi A., Maaroof B. F., & Zubaidi S. L. (2024b). Integrated geospatial approach for adaptive rainwater har-vesting site selection under the impact of climate change. Stochastic Environmental Research and Risk Assessment, 38(3), 1009-1033. https://doi.org/10.1007/s00477-023-02611-0.

[5]

Al-Hasani B., Abdellatif M., Carnacina I., Harris C., Al-Quraishi A. M. F., & Maaroof B. F. (2024a). Assessing climate change impacts on rainfall-runoff in northern Iraq:A case study of Kirkuk governorate, a semi-arid region. In A.Al-Quraishi, A.Negm, & B.Benzougagh (Climate change and environmental degradation in the MENA region Eds.), (pp. 93-111). Cham: Springer. https://doi.org/10.1007/698_2024_1154.

[6]

Al-Hasani B., Abdellatif M., Carnacina I., Harris C., Maaroof B. F., & Zubaidi S. L. (2025). Rainwater harvesting site assessment using geospatial Technologies in a Semi-Arid Region: Toward water sustainability. Water, 17(15), 2317. https://doi.org/10.3390/w17152317.

[7]

Al-Janabi K. Z., Jawad Ali A., Al-Taie F. H., & Jack F. J. (1988). Origin and nature of sand dunes in the alluvial plain of Southern Iraq. Journal of Arid Environments, 14(1), 27-34. https://doi.org/10.1016/s0140-1963(18)31093-0.

[8]

Al-Jiburi H. (2005). Hydrogeological and hydrochemical study of Al-Amara quadrangle. State Company of Geological Survey and Mining. Al-Jiburi, H. K., & Al-Basrawi, N. H. (2011). Hydrogeology of the Mesopotamia plain. Iraqi Bulletin of Geology and Mining, 5, 83-103.

[9]

Al-Salih S., & Al-Kubaisi Q. (2016). Hydrochemical assessment of water resouces in Al-Teeb area, ne Maissan governate, South Iraq. Iraqi Bulletin of Geology and Mining, 12(2), 1-12.

[10]

Arefin R., Mohir M. M. I., & Alam J. (2020). Watershed prioritization for soil and water conservation aspect using GIS and remote sensing: PCA-based approach at northern elevated tract Bangladesh. Applied Water Science, 10(4), 91. https://doi.org/10.1007/s13201-020-1176-5.

[11]

Carrión-Mero P., Montalván-Burbano N., Herrera-Narváez G., & Morante-Carballo F. (2021). Geodiversity and mining towards the development of geotourism: A global perspective. International Journal of Design & Nature and Ecodynamics, 16(2), 191-201. https://doi.org/10.18280/ijdne.160209.

[12]

Crofts R. (2019). Linking geoconservation with biodiversity conservation in protected areas. In International Journal of Geoheritage and Parks, 7(4), 211-217. https://doi. org/10.1016/j.ijgeop.2019.12.002.

[13]

Dinagara Pandi P., Thena T., Nirmal B., Aswathy M. R., Saravanan K., & Mohan K. (2017). Morphometric analyses of Neyyar River basin, southern Kerala, India. Geology, Ecology, and Landscapes, 1(4), 249-256. https://doi.org/10.1080/24749508.2017.1389494.

[14]

Diniz M. T. M., de Araújo I. G. D., & das Chagas M. D. (2022). Comparative study of quantitative assessment of the geomorphological heritage of the coastal zone of Icapuí -Ceará Brazil. International Journal of Geoheritage and Parks, 10(1), 124-142. https://doi.org/10.1016/j.ijgeop.2022.02.006.

[15]

Fenta A. A., Yasuda H., Shimizu K., Haregeweyn N., & Woldearegay K. (2017). Quantitative analysis and implications of drainage morphometry of the Agula water-shed in the semi-arid Northern Ethiopia. Applied Water Science, 7(7), 3825-3840. https://doi.org/10.1007/s13201-017-0534-4.

[16]

Fouad S. F., & Sissakian V. K. (2011). Tectonic and structural evolution of the Mesopotamia plain. Iraqi Bulletin of Geology and Mining, 4, 33-46. Fouad, S. F. A. (2010). Tectonic and structural evolution of the Mesopotamia Foredeep, Iraq. Iraqi Bulletin of Geology and Mining, 6(2), 41-53.

[17]

Fouad S. F. A. (2015). Tectonic map of Iraq, scale 1: 1,000,000. Iraqi Bulletin of Geology and Mining, 11(1), 1-7.

[18]

Gałaś A., Paulo A., Gaidzik K., Zavala B., Kalicki T., Churata D., Gałaś S., & Mariño J. (2018). Geosites and geotouristic attractions proposed for the project Geopark Colca and volcanoes of Andagua Peru. Geoheritage, 10(4), 707-729. https://doi.org/10.1007/s12371-018-0307-y.

[19]

Gordon J. E. (2019). Geoconservation principles and protected area management. International Journal of Geoheritage and Parks, 7(4), 199-210. https://doi.org/10.1016/j.ijgeop.2019.12.005.

[20]

Gordon J. E., Crofts R., Díaz-Martínez E., & Woo K. S. (2018). Enhancing the role of geoconservation in protected area management and nature conservation. Geoheritage, 10(2), 191-203. https://doi.org/10.1007/s12371-017-0240-5.

[21]

Gordon J. E., Crofts R., Gray M., & Tormey D. (2021). Including geoconservation in the management of protected and conserved areas matters for all of nature and people. International Journal of Geoheritage and Parks, 9(3), 323-334. https://doi.org/10.1016/j.ijgeop.2021.05.003.

[22]

Gray M., Gordon J. E., & Brown E. J. (2013). Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental man-agement. Proceedings of the GeologistsAssociation, 124(4), 659-673. https://doi.org/10.1016/j.pgeola.2013.01.003.

[23]

Henriques M. H., & Brilha J. (2017). UNESCO global Geoparks: A strategy towards global understanding and sustainability. Episodes, 40(4), 349-355. https://doi.org/10.18814/epiiugs/2017/v40i4/017036.

[24]

Hjort J., Heikkinen R. K., & Luoto M. (2012). Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodiversity and Conservation, 21(13), 3487-3506. https://doi.org/10.1007/s10531-012-0376-1.

[25]

Horton R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56(3), 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

[26]

Kubalíková L. (2020). Cultural ecosystem services of geodiversity: A case study from Stranska skala (Brno, Czech Republic). Land, 9(4), 105. https://doi.org/10.3390/land9040105.

[27]

Maaroof B., Kareem H., Al-Zubaydi J., Thannoun R., Al-Kubaisi M., Hasani A. L.,... Carnacina I. (2025). Classifying fluvial landforms using geospatial modeling in Al-Ashaali watershed, Iraqi Southern Desert. Bulletin of the Iraq Natural History Museum, 18(3), 739-763. https://doi.org/10.26842/binhm.7.2025.18.3.0739.

[28]

Maaroof B., Omran M., Al-Qaim F., Salman J., Hussain B., Abdellatif M.,... Hussein W. (2023). Environmental assessment of Al-Hillah River pollution at Babil Governorate (Iraq). Journal of the Geographical Institute Jovan Cvijic, SASA, 73(1), 1-16. https://doi.org/10.2298/IJGI2301001M.

[29]

Maaroof B. F. (2022a). Geomorphological assessment using geoinformatics applications of the sloping system of Al-Ashaali Drainage Basin at Iraqi Southern Desert. Iraqi National Journal of Earth Science, 22(1), 38-54. https://doi.org/10.33899/earth.2022.133146.1009.

[30]

Maaroof B. F. (2022b). Geomorphometric assessment of the river drainage network at Al-Shakak Basin (Iraq). Journal of the Geographical Institute Jovan Cvijic SASA, 72(1), 1-13. https://doi.org/10.2298/IJGI2201001M.

[31]

Maaroof B. F. (2024). Quantitative analysis using geospatial modeling of Al-Rahimaw watershed’s shape properties in the Iraqi Southern Desert. Bulletin of the Iraq Natural History Museum, 18(2), 277-295. https://doi.org/10.26842/binhm.7.2024.18.2.0277.

[32]

Maaroof B. F. (2025). Fluvial landforms classification using geospatial modeling of Al-Jazeera eastern region at Misan Governorate, Iraq. Iraqi National Journal of Earth Science, 25(2), 199-218. https://doi.org/10.33899/earth.2024.146564.1228.

[33]

Maaroof B. F., Al-Abdan R. H., & Kareem H. H. (2021). Geographical assessment of natural resources at Abu-Hadair Drainage Basin in Al-Salman Desert. Indian Journal of Ecology, 48(3), 797-802. Retrieved from https://www.indianjournals.com/ijor.aspx?target=ijor:ije1&volume=47&issue=3&article=007.

[34]

Maaroof B. F., Al-Musawi M. A., Kareem H. H., Al-Abdan R. H., Obaid H. S., Al-Hasani B.,... Carnacina I. (2023). Geographical assessment of the natural environment at Al-Huwaizah Marsh, Eastern of Misan Governorate, Iraq. Misan Journal of Academic Studies, 26(22), 293-310. https://doi.org/10.54633/2333-022-046-019.

[35]

Maaroof B. F., & Kareem H. H. (2020). Water erosion of the slopes of Tayyar drainage basin in the desert of Muthanna in Southern Iraq. Indian Journal Of Ecology, 47(3), 638-644. Retrieved from https://www.indianjournals.com/ijor.aspx?target=ijor:ije1&volume=47&issue=3&article=007.

[36]

Maaroof B. F., & Kareem H. H. (2022). Geomorphometric analysis of Al -Teeb River meanders between Al-Sharhani Basin and Al-Sanaf Marsh, eastern of Misan Governorate, Iraq. Misan Journal of Academic Studies, 21(42), 441-455. https://doi.org/10.54633/2333-021-042-033.

[37]

Maaroof B. F., & Kareem H. H. (2023). Geomorphological analysis of chemical weathering features in Al-Band Hills area, eastern of Misan governorate, Iraq. Iraqi Na-tional Journal of Earth Science, 23(1), 67-84. https://doi.org/10.33899/earth.2023.137382.1034.

[38]

Mucivuna V. C., Garcia M. G. M., Reynard E., & Rosa P. A. S. (2022). Integrating geoheritage into the management of protected areas: A case study of the Itatiaia Na-tional Park, Brazil. International Journal of Geoheritage and Parks, 10(2), 252-272. https://doi.org/10.1016/j.ijgeop.2022.04.004.

[39]

Najwer A., Jankowski P., Niesterowicz J., & Zwoliński Z. (2022). Geodiversity assessment with global and local spatial multicriteria analysis. International Journal of Applied Earth Observation and Geoinformation, 107, Article 102665. https://doi.org/10.1016/j.jag.2021.102665.

[40]

Pardo-Igúzquiza E., & Dowd P. A. (2021). The mapping of closed depressions and its contribution to the geodiversity inventory. International Journal of Geoheritage and Parks, 9(4), 480-495. https://doi.org/10.1016/j.ijgeop.2021.11.007.

[41]

Pereira D. I., Pereira P., Brilha J., & Santos L. (2013). Geodiversity assessment of Paraná state (Brazil): An innovative approach. Environmental Management, 52(3), 541-552. https://doi.org/10.1007/s00267-013-0100-2.

[42]

Pereira L. S., & da Silva Farias T. (2020). Assessing the cultural values of the geodiversity in a Brazilian city: The historical center of João Pessoa (Paraíba, NE Brazil), Mata da Aldeia chart. International Journal of Geoheritage and Parks, 8(1), 59-73. https://doi.org/10.1016/j.ijgeop.2020.03.002.

[43]

Pérez-Umaña D., Quesada-Román A., & Zangmo Tefogoum G. (2020). Geomorphological heritage inventory of Irazú volcano, Costa Rica. International Journal of Geoheritage and Parks, 8(1), 31-47. https://doi.org/10.1016/j.ijgeop.2019.12.001.

[44]

Prasannakumar V., Shiny R., Geetha N., & Vijith H. (2011). Applicability of SRTM data for landform characterisation and geomorphometry: A comparison with contour-derived parameters. International Journal of Digital Earth, 4(5), 387-401. https://doi.org/10.1080/17538947.2010.514010.

[45]

Quesada-Román A., & Pérez-Umaña D. (2020). State of the art of geodiversity, geoconservation, and geotourism in Costa Rica. Geosciences, 10(6), 1-17. https://doi. org/10.3390/geosciences10060211.

[46]

Quesada-Román A., Torres-Bernhard L., Ruiz-álvarez M. A., Rodríguez-Maradiaga M., Velázquez-Espinoza G., Espinosa-Vega C.,... Rodríguez-Bolaños H. (2022). Geodiversity, geoconservation, and geotourism in Central America. Land, 11(1), 48. https://doi.org/10.3390/land11010048.

[47]

Quesada-Román A., Zangmo G. T., & Pérez-Umaña D. (2020). Geomorphosite comparative analysis in Costa Rica and Cameroon volcanoes. Geoheritage, 12(4), 90. https://doi.org/10.1007/s12371-020-00515-x.

[48]

Quesada-Valverde M. E., & Quesada-Román A. (2023). Worldwide trends in methods and resources promoting geoconservation, geotourism, and geoheritage. Geosciences, 13(2), 39. https://doi.org/10.3390/geosciences13020039.

[49]

Resmi M. R., Babeesh C., & Achyuthan H. (2019). Quantitative analysis of the drainage and morphometric characteristics of the Palar River basin, southern peninsular India; using bAd calculator (bearing azimuth and drainage) and GIS. Geology, Ecology, and Landscapes, 3(4), 295-307. https://doi.org/10.1080/24749508.2018.1563750.

[50]

Schumm S. A. (1956). Evolution of drainage systems and slopes in Balands at Perthamboy, New Jersey. Geological Society of America Bulletin, 67(6), 597-646. https://doi.org/10.1130/0016-7606(1956)67.

[51]

Schumm S. A. (1963). Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74(9), 1089-1100.

[52]

Sissakian V. K., & Fouad S. F. A. (2025). Geological map of Iraq, scale 1:1,000,000. Iraqi Bulletin of Geology and Mining, 11(1), 9-16.

[53]

Sissakian V. K., Jab’bar M. F. A., & Jabbar M. F. A. (2014). Classification of the alluvial fans in Iraq. Iraqi Bulletin of Geology and Mining, 10(3), 43-67. Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248, 655-668.

[54]

Strahler A. N. (1954). Statistical analysis in geomorphic research. The Journal of Geology, 62(1), 1-25. https://doi.org/10.1086/626131.

[55]

Strahler A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913.

[56]

Umrikar B. N. (2017). Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science, 7(5), 2231-2243. https://doi.org/10.1007/s13201-016-0390-7.

[57]

Yacoub S. Y. (2011a). Geomorphology of the Mesopotamia plain. Iraqi Bulletin of Geology and Mining, 7(4), 7-32. Yacoub, S. Y. (2011b). Stratigraphy of the Mesopotamia plain. Iraqi Bulletin of Geology and Mining, 7(4), 74-82.

[58]

Yacoub S. Y. (2010). Geomorphology of the Mesopotamian plain: A critical review. Journal of Earth Sciences and Geotechnical Engineering, 10(4), 1-25.

[59]

Zarnetske P. L., Read Q. D., Record S., Gaddis K. D., Pau S., Hobi M. L.,... Finley A. O. (2019). Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Global Ecology and Biogeography, 28(5), 548-556. https://doi.org/10.1111/geb.12887.

PDF

521

Accesses

0

Citation

Detail

Sections
Recommended

/