Geosites and geodiversity sites of the Tinghir-Dades-Imilchil area, Morocco: Toward conservation, education, and tourism development

Mohamed El Ouali , Lahcen Kabiri , Badre Essafraoui , Mohamed Ben Bammou , Ismail Ait Lahssaine , Badre Messaoudi , Rowan Martindale

International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (4) : 652 -670.

PDF
International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (4) :652 -670. DOI: 10.1016/j.ijgeop.2025.10.002
Original article
research-article

Geosites and geodiversity sites of the Tinghir-Dades-Imilchil area, Morocco: Toward conservation, education, and tourism development

Author information +
History +
PDF

Abstract

The Tinghir-Dades-Imilchil area is a geosite of high scientific, educational, and touristic values in the Draa-Tafilalet Region, southeast Morocco. It has a rich geodiversity, including mountain ranges, plains, deserts, plateaus, and coasts, offering geomorphological and panoramic views, oases, lacks, and unique geological features (e.g., structural geology, sedimentology, petrogra-phy, paleontology, and hydrogeology). This paper focuses on the inventory and quantitative as-sessment of 25 sites of geological interest using the Global Methodology based on scientific value (SV), potential educational use (PEU) and potential touristic use (PTU), and degradation risk (DR) of each site. Indeed, SV is very high for 15 sites, high for 9 sites, and moderate for 1 site; PEU is very high for 21 sites and high for 4 sites; PTU is very high for 8 sites and high for 17 sites; and DR is high for 10 sites and moderate for 15 sites. Thus, 15 geosites (sites with very high SV values) and 10 geodiversity sites (sites with very high PEU or PTU values) are identified. These sites show highly significant scientific, educational, and touristic potentialities that should be valued and protected from degradation. Our work fits in well with the National Program of the Geology of Morocco-2030 strategy and the UNESCO directives, which aim at the inventory, awareness, valorization, and preservation of geological heritage. In addition, identi-fying and valuing these sites will help increase the area's attractiveness, preserve the environ-ment, and protect and enhance the region's geological history by introducing the geoheritage concept into its local and regional development plans. Suggested recommendations for their valorization and preservation constitute a valuable tool for local stakeholders to program their future sustainable actions and to improve the living conditions of the local population by creating new employment opportunities.

Keywords

Geoheritage / Quantitative assessment / Value / Sustainable development / Tinghir-Dades-Imilchil / Morocco

Cite this article

Download citation ▾
Mohamed El Ouali, Lahcen Kabiri, Badre Essafraoui, Mohamed Ben Bammou, Ismail Ait Lahssaine, Badre Messaoudi, Rowan Martindale. Geosites and geodiversity sites of the Tinghir-Dades-Imilchil area, Morocco: Toward conservation, education, and tourism development. International Journal of Geoheritage and Parks, 2025, 13(4): 652-670 DOI:10.1016/j.ijgeop.2025.10.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ABH-Guir-Ziz-Rhéris [Guir-Ziz-Rheris Hydraulic Basin Agency] (2018). Actualisation du Plan Directeur d'Aménagement Intégré des Ressources en Eau des bassins de Guir, Rhéris, Ziz et Maïder, Rapport définitif de la mission-n°1. Update of the master plan for the integrated Management of Water Resources in the Guir, Rhéris, Ziz and Maïder basins, final report of the Mission no.1.Errachidia: Mahboub,A.

[2]

Akasbi A., Amhoud H., Sabaoui A., Oumou A. (2023). The brown and ammonitico-rosso levels:Geoheritage reflecting the toarcian lithostratigraphy of the Middle Atlas (Morocco). In K.Baadi, K. (Ed.) Geoheritage of the Middle Atlas (Morocco). Cham: Springer. doi: 10.1007/978-3-031-27073-4_3

[3]

Amzil M., & Oukassou M. (2023). 3D Virtual Visit of the Paleontological Site of Anchrif (Middle Atlas, Morocco):A New Perspective for the Enhancement of Geoher-itage. Geoheritage of the Middle Atlas (Morocco) (pp. 89-100). Cham: Springer International Publishing.

[4]

Amzil M., Oukassou M., Lallensack J. N., Klein H., Zafaty O., Saber H.,... Gierliński G. D. (2024). New dinosaur tracks from the Middle Jurassic red beds of the Middle Atlas (Morocco): Application of photogrammetry to ichnology and conservation of geological heritage. Proceedings of the Geologists' Association, 135(4), 458-480. https://doi.org/10.1016/j.pgeola.2024.06.004.

[5]

Aoulad-Sidi-Mhend A., Cherai B., Maaté A., Hlila R., Amri I., Chakiri S., & Maaté S. (2022). Contribution à l'inventaire du patrimoine géologique du Maroc: Les géo-sites du métamorphisme des Sebtides le long de la côte des Ghomara (Rif interne, NO-Maroc). [contribution to the inventory of the geological heritage of Morocco: The geosites of the Sebtides metamorphism along the Ghomara coast (internal Rif, NW Morocco)]. Bulletin de l'Institut Scientifique, Section Sciences de la Terre, 44, 71-91. https://doi.org/10.55407/rsge.98204.

[6]

Aoulad-Sidi-Mhend A., Maaté A., Amri I., Hlila R., Chakiri S., Maaté S., & Martín-Martín M. (2019). The geological heritage of the Talassemtane National Park and the Ghomara coast natural area (NW of Morocco). Geoheritage, 11(3), 1005-1025. https://doi.org/10.1007/s12371-019-00347-4.

[7]

Baadi K. (2023). Geoheritage:A growing research topic in Morocco and the middle atlas. In K.Baadi (Ed.), Geoheritage of the middle-atlas (Morocco) (pp. 3-9). Cham: Springer. https://doi.org/10.1007/978-3-031-27073-4_1.

[8]

Berred S., Berred K., & Fadli D. (2022). Geodiversity of Kingdom of Morocco: Tata Province geomorphosites inventory for creating a geopark project (anti-atlas). International Journal Geoheritage/Parks, 10(3), 367-382. https://doi.org/10.1016/j.ijgeop.2022.07.001.

[9]

Bollati I., Crosa L. B., Zanoletti E., & Pelfini M. (2017). Geomorphological mapping for the valorization of the alpine environment. A methodological proposal tested in the Loana Valley (Sesia Val Grande Geopark, Western Italian Alps). Journal of Mountain Science, 14(6), 1023-1038. https://doi.org/10.1007/s11629-017-4427-7.

[10]

Brilha J. (2016). Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage, 8(2), 119-134. https://doi.org/10.1007/s12371-014-0139-3.

[11]

Buhl D., Immenhauser A., Smeulders G., Kabiri L., & Richter D. K. (2007). Times series δ 2 Mg analysis in speleothem calcite: Kinetic verus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research. Chemical Geology, 244( 3-4), 715-729. https://doi.org/10.1016/j.chemgeo.2007.07.019.

[12]

Chaabout S., Chennaoui A. H., Reimold W. -U., Aboulahris M., & Aoudjehane M. (2013). Evidence of non-impact cratering origin of Imilchil (Morocco) lakes (Isli and Tislit). Large Meteorite Impacts and Planetary Evolution, 5, 3074. https://www.hou.usra.edu/meetings/sudbury2013/pdf/3074.pdf.

[13]

Danisch J., Krencker F. N., Mau M., Mattioli E., Fauré P., Alméras Y., & Bodin S. (2021). Tracking a drowning unconformity up to the peritidal zone: Proximal expres-sion of the early Bajocian carbonate crisis in Morocco. Journal of African Earth Sciences, 182, Article 104300. https://doi.org/10.1016/j.jafrearsci.2021.104300.

[14]

El Hamidy M., Errami E., & Elkaichi A. (2024). An overview of scientific research on geoheritage in Morocco. Proceedings of the Geologists' Association, 135(2), 162-180. https://doi.org/10.1016/j.pgeola.2024.01.002.

[15]

El Hamidy M., Errami E., & Elkaichi A. (2024). Current trends and future directions for geoheritage assessment methodology in Morocco. Geoconservation Research, 7 (1), 89-111.

[16]

El Ouali M. (2022). Evolution lithostratigraphique, sédimentologique et structuro-géodynamique des couches rouges jurassico-crétacées du haut atlas central, Maroc [Lithostratatigraphic, sedimentological and structuro-geodynamic evolution of the Jurassico-cretaceous red layers of the central high atlas, Morocco] (doctoral dissertation). Meknes, Morocco: Moulay Ismail University.

[17]

El Ouali M., Kabiri L., Essafraoui B., Charroud A., Krencker F. -N., & Bodin S. (2021). Stratigraphic and geodynamic characterization of Jurassic-Cretaceous “red beds” on the Msemrir-Errachidia E-W transect (central High Atlas, Morocco). Journal of African Earth Sciences, 183, Article 104330. https://doi.org/10.1016/j.jafrearsci.2021.104330.

[18]

Errami E., Brocx M., & Semeniuk V. (2015). From geoheritage to geoparks:Case studies from Africa and beyond. Cham: Springer. https://doi.org/10.1007/978-3-319-10708-0.

[19]

Essafraoui B. (2015). Enregistrement séquentiel du Cénomano-Turonien des bassins Sud-atlasiques Sur la transversale Agadir-Goulmima (Maroc) [sequential recording of the Cenomano-Turonian of the south atlas basins on the Agadir-Goulmima transverse (Morocco)] (doctoral dissertation). Agadir, Morocco: Ibn Zohr University.

[20]

Ettachfini E. M., & Andreu B. (2004). Le Cénomanien et le Turonien de la plate-forme Préafricaine du Maroc [the Cenomanian and Turonian of the preafrican platform]. Agadir, Morocco: Ibn Zohr University. Cretaceous Research, 25(2), 277-302. https://doi.org/10.1016/j.cretres.2004.01.001.

[21]

Ettaki M. (2003). Etude sédimentologique et stratigraphique du Lias-début du Dogger de la région de Todrha-Dadès (versant sud du Haut-Atlas central, Maroc) : Implications géodynamiques [Sedimentological and stratigraphic study of the Lias-beginning of the Dogger of the Todrha-Dades region (southern slope of the Central High Atlas, Morocco): Geodynamic implications] (Doctoral dissertation). Marrakesh, Morocco: Cadi Ayyad University.

[22]

Ettaki M., Ibouh H., Chellaï E. H., & Milhi A. (2007). Les structures “diapiriques” liasiques du haut-atlas central, Maroc: exemple de la ride d'Ikerzi [the “diapiric” liasic structures of the central high atlas, Morocco: Example of the Ikerzi ridge]. Africa Geoscience Review, 14(1), 79-93 (Printed in France).

[23]

Fadile A. (2003). Carte géologique du Maroc (1/100.000), Feuille Imilchil [Geological Map of Morocco (1/100.000), Imilchil map]. 39. Maroc: Notes et Mémoires du Service Géologique.

[24]

Fassoulas C., Mouriki D., Dimitriou-Nikolakis P., & Iliopoulos G. (2012). Quantitative assessment of geotopes as an effective tool for geoheritage management. Geoheritage, 4(3), 177-193. https://doi.org/10.1007/s12371-011-0046-9.

[25]

Hadri M., Boutakiout M., Gómez F., & Pérez-Lorente F. (2015). Crocodyliform footprints from “les couches rouges” of the middle Jurassic of Msemrir, high-atlas, Morocco. Geogaceta, 58,39-42. https://sge.usal.es/archivos/geogacetas/geo58/geo58pag39-42.pdf.

[26]

Ibhi A., Nachit H., Abia E., Ait Touchnt A., & Vaccaro C. (2013). Isli and Tislit: the first dual impact crater discovered in Morocco. International Journal of Astronomy and Astrophysics, 3,1-4. https://doi.org/10.4236/ijaa.2013.32A001.

[27]

Ibouh H. (2004). Du rift avorté au bassin Sur décrochement, contrôles tectonique et sédimentaire pendant le Jurassique (haut-atlas central, Maroc) [from the abortedrift to the strike-slip basin, tectonic and sedimentary controls during the Jurassic (central high atlas, Morocco)] (doctoral dissertation). Marrakesh, Morocco: Cadi Ayyad University.

[28]

Ibouh H., & Chafiki D. (2017). La tectonique de l'Atlas: âge et modalités. Le Maroc, Paradis des géologues [the tectonics of the atlas: Age and modalities. Morocco, a paradise for geologists]. Géologues, 194,24-28.

[29]

Karmaoui A. (2022). Ordovician-Cambrian palaeontological heritage of Zagora Province: a bibliometric analysis from 1984 to 2020 (anti-atlas, Morocco). Geoheritage, 14(2), 55. https://doi.org/10.1007/s12371-022-00695-8.

[30]

Keever P. J. M., Zouros N., Patzak M., & Weber J. (2010). The UNESCO global network of national geoparks. In D. Newsome, & R. Dowling (Eds.), Geotourism: The tour-ism of geology and landscape. Oxford: Goodfellow Publishers. http://dx.doi.org/10.23912/978-1-906884-09-3-1071.

[31]

Klein H., Gierliński G. D., Oukassou M., Saber H., Lallensack J., Lagnaoui A., Hminna A., & Charrière A. (2022). Theropod and ornithischian dinosaur track assem-blages from middle to? Late Jurassic deposits of the central high atlas, Morocco. Historical-Biology, 35(3), 320-346. https://doi.org/10.1080/08912963.2022.2042808.

[32]

Krencker F. N., Fantasia A., Danisch J., Martindale R., Kabiri L., El Ouali M., & Bodin S. (2020). Two-phased collapse of the shallow-water carbonate factory during the late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the Northwestern Gondwana Margin. Earth-Science Reviews, 208, Article 103254. https://doi.org/10.1016/j.earscirev.2020.103254.

[33]

Krencker F. N., Fantasia A., El Ouali M., Kabiri L., & Bodin S. (2022). The effects of strong sediment-supply variability on the sequence stratigraphic architecture: In-sights from early Toarcian carbonate factory collapses. Marine and Petroleum Geology, 136, Article 105469. https://doi.org/10.1016/j.marpetgeo.2021.105469.

[34]

Martín-Martín J. D., Vergés J., Saura E., Moragas M., Messager G., Razin P., & Hunt D. W. (2017). Diapiric growth within an early Jurassic rift basin: The Tazoult salt wall (central high-atlas, Morocco). Tectonics, 36(1), 2-32. https://doi.org/10.1002/2016TC004300.

[35]

Marzoli A., Bertrand H., Knight K. B., Cirilli S., Buratti N., Vérati C., & Bellieni G. (2004). Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology, 32(11), 973-976. https://doi.org/10.1130/G20652.1.

[36]

Masrour M., Boutakiout M., Minguez Ceniceros J., Rolland T., & Pérez-Lorente F. (2023). Morphometric and biomorphic variability of theropod footprint characters from Imilchil tracksites (mid-Late Jurassic, central high-atlas, Morocco). Journal of African Earth Sciences, 207, Article 105048. https://doi.org/10.1016/j.jafrearsci.2023.105048.

[37]

Mehdioui S., Hadi H. E., Tahiri A., Haibi H. E., Tahiri M., Zoraa N., & Hamoud A. (2022). The geoheritage of northwestern Central Morocco area: Inventory and quantitative assessment of geosites for geoconservation, geotourism, geopark purpose and the support of sustainable development. Geoheritage, 14(3) https://doi.org/10.1007/s12371-022-00712-w.

[38]

Milhi A. (1997). Carte géologique du Maroc (1/100.000), Feuille Tinerhir [geological map of Morocco (1/100.000), Tinerhir map]. Notes et Mémoires du Service Géologique. Maroc, 377.

[39]

Moratti G., Benvenuti M., Santo A. P., Laurenzi M. A., Braschi E., & Tommasini S. (2018). New 40 Ar-39 Ar dating of lower cretaceous basalts at the southern front of the central high atlas, Morocco: insights on late Mesozoic tectonics, sedimentation and magmatism. International Journal of Earth Sciences, 107, 2491-2515. https://doi.org/10.1007/s00531-018-1609-7.

[40]

Oukassou M., Boumir K., Benshili K., Ouarhache D., Lagnaoui A., & Charrière A. (2019). The Tichoukt massif: A geotouristic play in the folded middle atlas (Morocco). Geoheritage, 11(2), 371-379. https://doi.org/10.1007/s12371-018-0287-y.

[41]

Oussou A., Falkingham P. L., Butler R. J., Boumir K., Ouarhache D., Ech-Charay K., Charrière A., & Maidment S. C. R. (2023). New middle to? Late Jurassic dinosaur tracksites in the central high Atlas Mountains, Morocco. Royal-Society-Open-Science, 10(9), Article 231091. https://doi.org/10.1098/rsos.231091.

[42]

Rais J., Barakat A., Louz E., & Ait B. A. (2021). Geological heritage in the M'Goun geopark: A proposal of geo-itineraries around the bine El Ouidane dam (central high atlas, Morocco). International Journal of Geoheritage and Parks, 9(2), 242-263. https://doi.org/10.1016/j.ijgeop.2021.02.00.

[43]

Redouane M., Haissen F., Zhang C., Sadki O., & Raji M. (2022). Plio-quaternary volcanism in northeastern Morocco: Petrography and geochemistry of outcrops with high geothermal potential. Open Journal of Geology, 12(11), 829-869. https://doi.org/10.4236/ojg.2022.1211040.

[44]

Reynard E. (2004). Géotopes, géo(morpho) sites et paysages géomorphologiques [Geotopes, geo(morpho) sites and geomorphological landscapes]. In E.Reynand, & J. P.Pralong (Paysagesgéomorphologiques geomorphological landscapes.Eds.), Lausanne: Institut de Géographie de l'Université de Lausanne (IGUL).

[45]

Reynard E., Perret A., Bussard J., Grangier L., & Martin S. (2016). Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage, 8(1), 43-60. https://doi.org/10.1007/s12371-015-0153-0.

[46]

Saadi M., Hilali E. A., & Bensaid M. (1977). Carte géologique du Maroc (1/200.000), Feuille Jebel Saghro-Dadès [geological map of Morocco (1/200.000), Jebel Saghro-Dadès map]. Ministère de l'Energie et des Mines, Maroc, 161.

[47]

Saura E., Vergés J., Martín-Martín J. D., Messager G., Moragas M., Razin P., & Hunt D. W. (2014). Syn-to-post-rift diapirism and minibasins of the central high atlas (Morocco): The changing face of a mountain belt. Journal of the Geological Society, 171(1), 97-105. https://doi.org/10.1144/jgs2013-079.

[48]

Schiavo A., Taj-Eddine K., Algouti A., Benvenuti M., Dal Piaz G. V., Eddebbi A., & Visonà D. (2007). Carte Géologique du Maroc (1/50.000), feuille Imiter, Notice expli-cative [Geological Map of Morocco (1/50.000), Imiter map, Explanatory note]. 518. (pp.96). Maroc: Notes et Mémoires du Service Géologique, 96.

[49]

Sellier D. (2016). A deductive method for the selection of geomorphosites: application to Mont Ventoux (Provence, France). Geoheritage, 8(1), 15-29. https://doi.org/10.1007/s12371-015-0144-1.

[50]

Si M. H., Charroud A., Oukassou M., Alali A., Baidder L., Raji M., & Elouariti S. (2023). Enhancing the geological heritage of the Errachidia area in the high atlas, Morocco: Inventory and a proposal for a pedagogic and geotouristic trail. Geoheritage, 15(2), 45. https://doi.org/10.1007/s12371-023-00813-0.

[51]

Stüder M. (1980). Tectonique et pétrographie des roches sédimentaires, éruptives et métamorphiques de Tounfite, Tirrhist (haut-atlas, Maroc) [tectonics and petrography of sedimentary, eruptive and metamorphic rocks of Tounfite, Tirrhist (high atlas, Morocco)]. (Doctoral dissertation). Switzerland: University of Neuchâtel, 102.

[52]

Vujičić V. P. (2011). Minimization of torque ripple and copper losses in switched reluctance drive. IEEE-transactions-Power-electronics, 27(1), 388-399. https://doi.org/10.1109/TPEL.2011.2158447.

PDF

974

Accesses

0

Citation

Detail

Sections
Recommended

/