Identification of geodiversity in Kalimpong District, India: A geospatial assessment using geodiversity index and multi-criterion decision analysis approach

Alok Sarkar , Sarfaraz Alam , Prasanya Sarkar , Pulak Barman , Shasanka Kumar Gayen

International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (3) : 372 -387.

PDF
International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (3) :372 -387. DOI: 10.1016/j.ijgeop.2025.06.001
Original article
research-article

Identification of geodiversity in Kalimpong District, India: A geospatial assessment using geodiversity index and multi-criterion decision analysis approach

Author information +
History +
PDF

Abstract

The evaluation of geodiversity assessment is essential for preserving geoheritage, enhancing sustainable geotourism, and supporting conservation efforts in ecologically fragile regions. This research aims to analyse and explore the geodiversity of Kalimpong District, India, utilising a comprehensive geospatial analysis to identify areas of major geological importance for strategic planning for geotourism. This study conducts a thorough geospatial evaluation of geodiversity in India's Kalimpong District using the analytical hierarchy process (AHP) and the geodiversity index. Analysing diverse geospatial datasets, including energy of relief diversity, relief fragmentation diversity, geological diversity, drainage density diversity, topography roughness index, trekking routes diversity, waterfalls, lakes diversity, and soil diversity, it systematically characterizes the district's geodiversity. The analytical hierarchy process has been used to determine the main criterion's weight. We also grade the sub-criterion rank supplied by Zwoliński. The geodiversity index identifies areas with geodiversity potential. The geodiversity index aids in identifying and categorizing geodiversity zones into five levels: very high, high, moderate, low, and very low. The findings depict a varied landscape abundant in geological features, with distinct zones reflecting differing levels of geological richness. Notably, the presence of very high geodiversity zones around Neora Valley National Park highlights rugged terrains and dense forests. These zones not only allure tourists but also safeguard valuable geoheritage. This study accentuates the Kalimpong District's potential for geotourism development and stresses the significance of conservation endeavors to preserve its geological diversity. Leveraging its unique geological attributes, the district can establish sustainable geotourism destinations, fostering economic growth, cultural enrichment, and environmental preservation.

Keywords

geodiversity index / analytic hierarchy process / Kalimpong / geotourism / geomorphosite / geospatial

Cite this article

Download citation ▾
Alok Sarkar, Sarfaraz Alam, Prasanya Sarkar, Pulak Barman, Shasanka Kumar Gayen. Identification of geodiversity in Kalimpong District, India: A geospatial assessment using geodiversity index and multi-criterion decision analysis approach. International Journal of Geoheritage and Parks, 2025, 13(3): 372-387 DOI:10.1016/j.ijgeop.2025.06.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Abdekareem, N. Al-Arifi, F. Abdalla, A. Mansour, F. El-Baz. Fusion of remote sensing data using GIS-based AHP-weighted overlay techniques for groundwater sustainability in arid regions. Sustainability, 14 (13) (2022), p. 7871, 10.3390/su14137871

[2]

A. Acharya, B.K. Mondal, T. Bhadra, K. Abdelrahman, P.K. Mishra, A. Tiwari, R. Das. Geospatial analysis of geo-ecotourism site suitability using AHP and GIS for sustainable and resilient tourism planning in West Bengal, India. Sustainability, 14 (4) (2022), p. 2422, 10.3390/su14042422

[3]

M. Ahmadi, K. Derafshi, D. Mokhtari, M. Khodadadi, E. Najafi. Geodiversity assessments and geoconservation in the northwest of Zagros Mountain range, Iran: Grid and fuzzy method analysis. Geoheritage, 14 (4) (2022), p. 132, 10.1007/s12371-022-00769-7

[4]

G. Amin, E. Haroon, I. Imtiaz, N.U. Saqib, M.I. Shahzad. Ecotourism potential assessment for Gilgit-Baltistan, Pakistan using integration of GIS, remote sensing. AHP and crowd-sourced data. Geocarto International, 37 (25) (2021), pp. 8724-8745, 10.1080/10106049.2021.2005157

[5]

Australian Heritage Commission. Australian Natural Heritage Charter for the Conservation of Places of Natural Heritage Significance. (2nd ed.), Australian Heritage Commission, Canberra (2002)

[6]

V. Bajala, M.S. Rishi, L. Kaur, G. Sharma. Assessment of geodiversity of Parbati River basin in North-Western Himalayan region, India. Geocarto International, 37 (26) (2022), pp. 13797-13811, 10.1080/10106049.2022.2082557

[7]

M. Bakır, Ö. Atalık. Application of fuzzy ahp and fuzzy marcos approach for the evaluation of e-service quality in the airline industry. Decision Making: Applications in Management and Engineering, 4 (1) (2021), pp. 127-152, 10.31181/dmame2104127b

[8]

A. Benito-Calvo, A. Pérez-González, O. Magri, P. Meza. Assessing regional geodiversity: The Iberian Peninsula. Earth Surface Processes and Landforms, 34 (10) (2009), pp. 1433-1445, 10.1002/esp.1840

[9]

F. Bétard, J.P. Peulvast. Geodiversity hotspots: Concept, method and cartographic application for geoconservation purposes at a regional scale. Environmental Management, 63 (6) (2019), pp. 822-834, 10.1007/s00267-019-01168-5

[10]

I.M. Bollati, A. Masseroli, M. Al Kindi, L. Cezar, A. Chrobak-Žuffová, A. Dongre, … M. Zucali. The IGCP 714 project “3GEO—Geoclimbing & Geotrekking in Geoparks”—Selection of geodiversity sites equipped for climbing for combining outdoor and multimedia activities. Geoheritage, 16 (3) (2024), p. 79, 10.1007/s12371-024-00976-4

[11]

I.M. Bollati, C. Viani, A. Masseroli, G. Mortara, B. Testa, G. Tronti, … E. Reynard. Geodiversity of proglacial areas and implications for geosystem services: A review. Geomorphology, 421 (2023), Article 108517, 10.1016/j.geomorph.2022.108517

[12]

J. Brilha, M. Gray, D.I. Pereira, P. Pereira. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environmental Science & Policy, 86 (2018), pp. 19-28, 10.1016/j.envsci.2018.05.001

[13]

L. Carcavilla, J.J. Durán, J. López-Martínez. Geodiversidad: Concepto y relación con el patrimonio geológico [Geodiversity: Concept and relationship with geological heritage]. Geo-Temas, 10 (2008), pp. 1299-1303 (In Spanish)

[14]

I.A. Chandio, A.N.B. Matori, K.B. WanYusof, M.A.H. Talpur, A.-L. Balogun, D.U. Lawal. GIS-based analytic hierarchy process as a multicriterion decision analysis instrument: A review. Arabian Journal of Geosciences, 6 (8) (2013), pp. 3059-3066, 10.1007/s12517-012-0568-8

[15]

A. Chrobak, J. Novotný, P. Struś. Geodiversity assessment as a first step in designating areas of Geotourism potential. Case study: Western Carpathians. Frontiers in Earth Science, 9 (2021), Article 752669, 10.3389/FEART.2021.752669/BIBTEX

[16]

P. Coratza, I.M. Bollati, V. Panizza, P. Brandolini, D. Castaldini, F. Cucchi, … M. Pelfini. Advances in geoheritage mapping: Application to iconic geomorphological examples from the Italian landscape. Sustainability, 13 (20) (2021), Article 11538, 10.3390/su132011538

[17]

B. Das, R. Bordoloi, L.T. Thungon, A. Paul, P.K. Pandey, M. Mishra, O.P. Tripathi. An integrated approach of GIS, RUSLE and AHP to model soil erosion in West Kameng watershed, Arunachal Pradesh. Journal of Earth System Science, 129 (1) (2020), p. 94, 10.1007/s12040-020-1356-6

[18]

S. Das, S. Sarkar, D.P. Kanungo. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong region of Darjeeling Himalaya. Environmental Monitoring and Assessment, 194 (10) (2022), p. 234, 10.1007/s10661-022-09851-7

[19]

V. Dede, K. Zorlu. Geoheritage assessment with entropy-based WASPAS approach: An analysis on Karçal Mountains (Turkey). Geoheritage, 15 (1) (2023), p. 5, 10.1007/s12371-022-00777-7

[20]

A. Dikshit, D.N. Satyam. Estimation of rainfall thresholds for landslide occurrences in Kalimpong, India. Innovative Infrastructure Solutions, 3 (1) (2018), p. 24, 10.1007/s41062-018-0132-9

[21]

G. Dixon. Geoconservation: An international review and strategy for Tasmania. Parks and Wildlife Service, Department of Environment and Land Management, Tasmania, Hobart (1996)

[22]

U. Durlević, N. Čegar, M. Dobrić, S. Vukašinović, T. Lukić, V. Stevanović, … A. Valjarević. The heritage climate index (HERCI): Development, assessment and application for tourism purposes in geoheritage and cultural heritage sites. Atmosphere, 14 (8) (2023), p. 1265, 10.3390/atmos14081265

[23]

M. Ebrahimi, H. Nejadsoleymani, M.R. Mansouri Daneshvar. Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: A multi-criterion analysis based on AHP and GIS. Asia-Pacific Journal of Regional Science, 3 (3) (2019), pp. 697-718, 10.1007/s41685-019-00123-w

[24]

A. Ferrando, F. Faccini, G. Paliaga, P. Coratza. A quantitative GIS and AHP based analysis for geodiversity assessment and mapping. Sustainability, 13 (18) (2021), Article 10376, 10.3390/su131810376

[25]

J.P. Forte, J. Brilha, D.I. Pereira, M. Nolasco. Kernel density applied to the quantitative assessment of geodiversity. Geoheritage, 10 (2) (2018), pp. 205-217, 10.1007/s12371-018-0282-3

[26]

Gray M. (2004). Geodiversity: Valuing and conserving abiotic nature. Retrieved from https://books.google.com/books?hl=en&lr=&id=_8B_TU_G77YC&oi=fnd&pg=PR5&dq=Geodiversity.+Valuing+and+conserving+abiotic+nature&ots=umaKpixH_O&sig=aOyFd1yzglu3ArATWcGS2Rr60Rc.

[27]

M. Gray. Geodiversity, geoheritage and geoconservation for society. International Journal of Geoheritage and Parks, 7 (4) (2019), pp. 226-236, 10.1016/j.ijgeop.2019.11.001

[28]

J. Hjort, M. Luoto. Geodiversity of high-latitude landscapes in northern Finland. Geomorphology, 115 (1-2) (2010), pp. 109-116, 10.1016/j.geomorph.2009.09.039

[29]

J.-J. Ibáñez, E.C. Brevik, A. Cerdà. Geodiversity and geoheritage: Detecting scientific and geographic biases and gaps through a bibliometric study. Science of the Total Environment, 659 (2019), pp. 1032-1044, 10.1016/j.scitotenv.2018.12.443

[30]

E. Ilbahar, A. Karaşan, S. Cebi, C. Kahraman. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety Science, 103 (2018), pp. 124-136, 10.1016/j.ssci.2017.10.025

[31]

F. Khosravi, G. Izbirak.A framework of index system for gauging the sustainability of iranian provinces by fusing analytical hierarchy process (AHP) and rough set theory (RST). Socio-Economic Planning Sciences, 95 (2024), Article 101975, 10.1016/j.seps.2024.101975

[32]

D. Kılıc, C. Yagci, F. Iscan.A GIS-based multi-criterion decision analysis approach using AHP for rural settlement site selection and eco-village design in Erzincan, Turkey. Socio-Economic Planning Sciences, 86 (2023), Article 101478, 10.1016/j.seps.2022.101478

[33]

S. Kozłowski. Geodiversity. The concept and scope of geodiversity. Przegląd Geologiczny, 52 (8) (2004), pp. 833-837

[34]

A. Kumar, S. Singh, M. Pramanik, S. Chaudhary, M.S. Negi. Soil erodibility mapping using watershed prioritization and morphometric parameters in conjunction with WSA, SPR and AHP-TOPSIS models in Mandakini basin, India. International Journal of River Basin Management, 22 (2) (2022), pp. 143-165, 10.1080/15715124.2022.2114485

[35]

Y. Liu, C.M. Eckert, C. Earl.A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161 (2020), Article 113738, 10.1016/j.eswa.2020.113738

[36]

J. Malczewski.GIS and multicriterion decision analysis. Retrieved from https://books.google.com/books?hl=en&lr=&id=ZqUsEAAAQBAJ&oi=fnd&pg=PA393&dq=Malczewski+J+(1999)+GIS+and+multicriterion+decision+analysis.+Wiley,+New+York,+pp+177%E2%80%93192&ots=6H139lmCcW&sig=pBOiVis_Vs6NeNzvOR-us5Kmq1k (1999)

[37]

F.C. Manosso, M.T. de Nóbrega. Calculation of geodiversity from landscape units of the Cadeado range region in Paraná Brazil. Geoheritage, 8 (3) (2016), pp. 189-199, 10.1007/s12371-015-0152-1

[38]

T.J. Matthews. Integrating geoconservation and biodiversity conservation: Theoretical foundations and conservation recommendations in a European Union context. Geoheritage, 6 (1) (2014), pp. 57-70, 10.1007/s12371-013-0092-6

[39]

M. Michalak, J. Bagiński, A. Białas, A. Kozłowski, M. Sikora. A generic component for analytic hierarchy process-based decision support and its application for postindustrial area management. Infrastructures, 9 (1) (2023), p. 2, 10.3390/infrastructures9010002

[40]

A. Najwer, P. Jankowski, J. Niesterowicz, Z. Zwoliński.Geodiversity assessment with global and local spatial multicriterion analysis. International Journal of Applied Earth Observation and Geoinformation, 107 (2022), Article 102665, 10.1016/j.jag.2021.102665

[41]

A. Najwer, Z. Zwoliński. Semantyka i metodyka oceny georóżnorodności—przegląd i propozycja badawcza [Semantics and methodology of geodiversity assessment—review and research proposal]. Landform Analysis, 26 (2014), pp. 115-127, 10.12657/landfana.026.011 (In Polish)

[42]

V. Niklova, E. Zareva. Geodiversity assessment by application of geoinformation approach (on the example of Golo Bardo Mountain, Western Bulgaria). Forum geografic, 21 (1) (2022), pp. 18-26, 10.5775/fg.2022. 137.i

[43]

J.A. Ortega-Becerril, I. Polo, A. Belmonte. Waterfalls as geological value for geotourism: The case of Ordesa and Monte Perdido National Park. Geoheritage, 11 (3) (2019), pp. 1199-1219, 10.1007/s12371-019-00366-1

[44]

E. Pardo-Igúzquiza, J.J. Durán-Valsero, P.A. Dowd, J.A. Luque-Espinar, J. Heredia, P.A. Robledo-Ardila. Geodiversity of closed depressions in a high relief karst: Geoeducation asset and geotourism resource in the “Sierra de Las Nieves” National Park (Málaga Province, Southern Spain). International Journal of Geoheritage and Parks, 10 (2) (2022), pp. 196-217, 10.1016/j.ijgeop.2022.04.001

[45]

D.I. Pereira, P. Pereira, J. Brilha, L. Santos. Geodiversity assessment of Paraná State (Brazil): An innovative approach. Environmental Management, 52 (3) (2013), pp. 541-552, 10.1007/s00267-013-0100-2

[46]

M. Radovanović, A. Ranđelović, Ž. Jokić. Application of hybrid model fuzzy AHP - VIKOR in selection of the most efficient procedure for rectification of the optical sight of the long-range rifle. Decision Making: Applications in Management and Engineering, 3 (2) (2020), pp. 131-148, 10.31181/dmame2003131r

[47]

K. Ransikarbum, R. Pitakaso.Multi-objective optimization design of sustainable biofuel network with integrated fuzzy analytic hierarchy process. Expert Systems with Applications, 240 (2024), Article 122586, 10.1016/j.eswa.2023.122586

[48]

J. Roy, S. Saha, A. Arabameri, T. Blaschke, D.T. Bui. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sensing, 11 (23) (2019), p. 2866, 10.3390/rs11232866

[49]

T.L. Saaty. The analytic hierarchy process: Planning, priority, resource allocation. McGraw-Hill, New York (1980)

[50]

T.L. Saaty.Fundamentals of analytical network process. Retrieved from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Saaty%2C+T.+L.+%281999%29.+Fundamentals+of+the+analytic+network+process.+In+International+symposium+of+the+analytic+hierarchy+process+%28ISAHP%29%2C+Kobe%2C+Japan&btnG= (1999)

[51]

T.L. Saaty. Fundamentals of the analytic network process—Multiple networks with benefits, costs, opportunities and risks. Journal of Systems Science and Systems Engineering, 13 (2004), pp. 348-379, 10.1007/s11518-006-0171-1

[52]

T.L. Saaty, L.G. Vargas. Models, methods, concepts & applications of the analytic hierarchy process (pp. 1-25). Springer, Boston (2001), 10.1007/978-1-4615-1665-1_1

[53]

M. Scarsi, L. Crispini, C. Malatesta, C. Spagnolo, G. Capponi. Geological map of a treasure chest of geodiversity: The Lavagnina Lakes area (Alessandria, Italy). Geosciences, 9 (5) (2019), p. 229, 10.3390/geosciences9050229

[54]

E. Serrano, P. Ruiz-Flaño. Geodiversity: A theoretical and applied concept. Geographica Helvetica, 62 (2007), pp. 140-147, 10.5194/gh-62-140-2007

[55]

J.P. Silva, D.I. Pereira, A.M. Aguiar, C. Rodrigues. Geodiversity assessment of the Xingu drainage basin. Journal of Maps, 9 (2) (2013), pp. 254-262, 10.1080/17445647.2013.775085

[56]

M. Stanley. Geodiversity—Linking people, landscapes and their culture. Retrieved from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stanley%2C+M.+%282004%29.+Geodiversity+%E2%80%93+Linking+People%2C+Landscapes+and+Their+Culture.+Natural+and+Cultural+Landscape+%E2%80%93+the+Geological+Foundation.+Editor+M.+A.+Parkes+%28Dublin%3A+Royal+Irish+Academy%29%2C+47%E2%80%9352.&btnG= (2004)

[57]

I. Stavi, S. Rachmilevitch, H. Yizhaq. Geodiversity effects on soil quality and geo-ecosystem functioning in drylands. CATENA, 176 (2019), pp. 372-380, 10.1016/j.catena.2019.01.037

[58]

U. Stepišnik, A. Trenchovska. A proposal of quantitative geodiversity evaluation model on the example of Upper Pivka karst, Slovenia. Dela, 46 (2016), pp. 53-65, 10.4312/dela.46.2.41-65

[59]

D. Tang, M.J. Chen, X.H. Huang, G.C. Zhang, L. Zeng, G.S. Zhang, … Y.W. Wang. SRplot: A free online platform for data visualization and graphing. PLoS One, 18 (11) (2023), Article e0294236, 10.1371/journal.pone.0294236

[60]

A. Valjarević, D. Vukoičić, D. Valjarević. Evaluation of the tourist potential and natural attractivity of the Lukovska Spa. Tourism Management Perspectives, 22 (2017), pp. 7-16, 10.1016/j.tmp.2016.12.004

[61]

Z. Zwoliński. The routine of landform geodiversity map design for the Polish Carpathian Mts. Landform Analysis, 11 (2009), pp. 77-85

[62]

Z. Zwoliński, A. Najwer, M. Giardino. Methods for assessing geodiversity. E. Reynard, J. Brilha (Eds.), Geoheritage: Assessment, protection, and management, Elsevier, Amsterdam (2018), pp. 27-52, 10.1016/B978-0-12-809531-7.00002-2

[63]

S.H. Zyoud, D. Fuchs-Hanusch. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78 (2017), pp. 158-181, 10.1016/j.eswa.2017.02.016

PDF

486

Accesses

0

Citation

Detail

Sections
Recommended

/