Application of bivariate mapping to assess geodiversity and its geomorphic constraints: A case study in Kuwait

Abdullatif Alyaqout , Faisal Anzah

International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (1) : 17 -30.

PDF
International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (1) :17 -30. DOI: 10.1016/j.ijgeop.2025.01.002
Original article
research-article

Application of bivariate mapping to assess geodiversity and its geomorphic constraints: A case study in Kuwait

Author information +
History +
PDF

Abstract

Geodiversity assessment is a critical preliminary step for geoconservation planning and represents the foundation for any rich biodiversity system. The purposes of this research were to identify the geomorphic constraints that influence the geodiversity in Kuwait, and to explore how bivariate choropleth mapping can be implemented as an innovative approach to visualize geodiversity results along with the geomorphic constraints synchronously. The assessment of geodiversity involves several abiotic elements, including geology, geomorphology, soil, and hydrology. In arid regions, such as Kuwait, geomorphic factors such as sand encroachment and soil erosion limit the resilience of ecosystems. Therefore, considering these factors during a geodiversity analysis is a substantial matter. Additionally, using bivariate choropleth mapping as an advanced cartographic method should leverage the integration between the geodiversity results and the geomorphic constraints. After we applied the centroid-based geodiversity index analysis, excluding restricted areas, the results showed that a high geodiversity index covered about 10% of Kuwait's area and was found mostly north of Kuwait Bay and towards the middle of the country. Combining the geodiversity index with the geomorphic constraints in a bivariate map revealed that about 11.8%, excluding restricted areas, consisted of optimum sites to be proposed as geoconservations. Despite the significance of geodiversity assessment in arid regions, it is also important to consider the geomorphic constraints that could limit the suitability of a given area of land to be protected.

Keywords

geoconservation / geodiversity assessment / geomorphic constraints / bivariate choropleth mapping / arid regions / Kuwait

Cite this article

Download citation ▾
Abdullatif Alyaqout, Faisal Anzah. Application of bivariate mapping to assess geodiversity and its geomorphic constraints: A case study in Kuwait. International Journal of Geoheritage and Parks, 2025, 13(1): 17-30 DOI:10.1016/j.ijgeop.2025.01.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Ahmadi, K. Derafshi, D. Mokhtari, M. Khodadadi, E. Najafi. Geodiversity assessments and geoconservation in the northwest of Zagros Mountain range, Iran: Grid and fuzzy method analysis. Geoheritage, 14 (4) (2022), p. 132, 10.1007/s12371-022-00769-7

[2]

M.H. Al-Hashim, H.M. El-Asmar, M.E. Hereher, F. Alshehri. Sedimentomorphic geodiversity in response to depositional environments: Remote sensing application along the coastal plain between Ummlujj and Al-Wajh, Red Sea, Saudi Arabia. Arabian Journal of Geosciences, 14 (11) (2021), p. 1061, 10.1007/s12517-021-07437-0

[3]

A.B. Al-Helal, J.M. Al-Awadhi. Assessment of sand encroachment in Kuwait using GIS. Environmental Geology, 49 (7) (2006), pp. 960-967, 10.1007/s00254-005-0134-8

[4]

M.M. Al-Mamari, S.A. Kantoush, T.M. Al-Harrasi, A. Al-Maktoumi, K.I. Abdrabo, M. Saber, T. Sumi. Assessment of sediment yield and deposition in a dry reservoir using field observations, RUSLE and remote sensing: Wadi Assarin, Oman. Journal of Hydrology, 617 (2023), Article 128982, 10.1016/j.jhydrol.2022.128982

[5]

J. Almedeij. Drought analysis for Kuwait using standardized precipitation index. The Scientific World Journal, 2014 (2014), Article 451841, 10.1155/2014/451841

[6]

M. Al-Sayegh.Eco-physiological implications of conservation of Dhubs (Uromastyx Aegyptius) in Kuwait Retrieved from https://keep.lib.asu.edu/_flysystem/fedora/c7/179068/AlSayegh_asu_0010E_17139.pdf (2017)

[7]

F.Y. Al-Yamani, J. Bishop, E. Ramadhan, M. Al-Husaini, A.N. Al-Ghadban. Oceanographic atlas of Kuwait’s waters. Kuwait Institute for Scientific Research, Safat, Kuwait (2004)

[8]

M.G. Anderson, C.E. Ferree. Conserving the stage: Climate change and the geophysical underpinnings of species diversity. PLoS One, 5 (7) (2010), Article e11554, 10.1371/journal.pone.0011554

[9]

A. Benito-Calvo, A. Pérez-González, O. Magri, P. Meza. Assessing regional geodiversity: The Iberian Peninsula. Earth Surface Processes and Landforms, 34 (10) (2009), pp. 1433-1445, 10.1002/esp.1840

[10]

C. Biesecker, W.E. Zahnd, H.M. Brandt, S.A. Adams, J.M. Eberth. A bivariate mapping tutorial for cancer control resource allocation decisions and interventions. Preventing Chronic Disease, 17 (2020), Article 190254, 10.5888/pcd17.190254

[11]

J. Bradbury. A keyed classification of natural geodiversity for land management and nature conservation purposes. Proceedings of the Geologists’ Association, 125 (3) (2014), pp. 329-349, 10.1016/j.pgeola.2014.03.006

[12]

M.R. Burnett, P.V. August, J.H. Brown Jr. K.T. Killingbeck. The influence of geomorphological heterogeneity on biodiversity: I. A patch-scale perspective. Conservation Biology, 12 (2) (1998), pp. 363-370, 10.1111/j.1523-1739.1998.96238.x

[13]

P.J. Comer, R.L. Pressey, M.L. Hunter, C.A. Schloss, S.C. Buttrick, N.E. Heller, J.M. Tirpak, D.P. Faith, M.S. Cross, M.L. Shaffer. Incorporating geodiversity into conservation decisions. Conservation Biology, 29 (3) (2015), pp. 692-701, 10.1111/cobi.12508

[14]

J.R.A. Crisp, J.C. Ellison, A. Fischer. Current trends and future directions in quantitative geodiversity assessment. Progress in Physical Geography: Earth and Environment, 45 (4) (2021), pp. 514-540, 10.1177/0309133320967219

[15]

R. Crofts. Promoting geodiversity: Learning lessons from biodiversity. Proceedings of the Geologists’ Association, 125 (3) (2014), pp. 263-266, 10.1016/j.pgeola.2014.03.002

[16]

M.L.N da Silva, M.A.L. do Nascimento, K.L. Mansur. Quantitative assessments of geodiversity in the area of the Seridó Geopark Project, Northeast Brazil: Grid and centroid analysis. Geoheritage, 11 (2019), pp. 1177-1186, 10.1007/s12371-019-00368-z

[17]

M.C.S.S. Dias, J.O. Domingos, S.S. dos Santos Costa, M.A.L. do Nascimento, M.L.N. da Silva, L.P. Granjeiro, R.F. de Lima Miranda. Geodiversity index map of Rio Grande Do Norte State, Northeast Brazil: Cartography and quantitative assessment. Geoheritage, 13 (1) (2021), p. 10, 10.1007/s12371-021-00532-4

[18]

F. El-Baz, M. Al-Sarawi. Atlas of the state of Kuwait from satellite images. Kuwait Foundation for the Advancement of Sciences, Kuwait (2000)

[19]

A. Elnashar, H. Zeng, B. Wu, A.A. Fenta, M. Nabil, R. Duerler.Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework. Science of the Total Environment, 793 (2021), Article 148466, 10.1016/j.scitotenv.2021.148466

[20]

A. Ferrando, F. Faccini, G. Paliaga, P. Coratza. A quantitative GIS and AHP based analysis for geodiversity assessment and mapping. Sustainability, 13 (18) (2021), Article 10376, 10.3390/su131810376

[21]

J.P. Forte, J. Brilha, D.I. Pereira, M. Nolasco. Kernel density applied to the quantitative assessment of geodiversity. Geoheritage, 10 (2) (2018), pp. 205-217, 10.1007/s12371-018-0282-3

[22]

J.E. Gordon, J.J. Bailey, J.G. Larwood. Conserving nature’s stage provides a foundation for safeguarding both geodiversity and biodiversity in protected and conserved areas. Parks Stewardship Forum, 38 (1) (2022), pp. 46-55, 10.5070/P538156118

[23]

J.M. Gray. Geodiversity: Valuing and conserving abiotic nature, Wiley-Blackwell, Chichester (2004)

[24]

F. He, N. Wu, X. Dong, T. Tang, S. Domisch, Q. Cai, S.C. Jähnig.Elevation, aspect, and local environment jointly determine diatom and macroinvertebrate diversity in the Cangshan Mountain, Southwest China. Ecological Indicators, 108 (2020), Article 105618, 10.1016/j.ecolind.2019.105618

[25]

T. Hengl, J.M. De Jesus, R.A. MacMillan, N.H. Batjes, G.B.M. Heuvelink, E. Ribeiro, A. Samuel-Rosa, B. Kempen, J.G.B. Leenaars, M.G. Walsh, M.R. Gonzalez. SoilGrids1km—Global soil information based on automated mapping. Edited by Ben Bond-Lamberty. PLoS One, 9 (8) (2014), Article e105992, 10.1371/journal.pone.0105992

[26]

T. Hengl. Finding the right pixel size. Computers & geosciences, 32 (9) (2006), pp. 1283-1298, 10.1016/j.cageo.2005.11.008

[27]

J. Hjort, J.E. Gordon, M. Gray, M.L. Hunter Jr.. Why geodiversity matters in valuing nature's. Conservation Biology, 29 (3) (2015), pp. 630-639, 10.1111/cobi.12510

[28]

J. Hjort, H. Tukiainen, H. Salminen, J. Kemppinen, P. Kiilunen, H. Snåre, … T. Maliniemi. A methodological guide to observe local-scale geodiversity for biodiversity research and management. Journal of Applied Ecology, 59 (7) (2022), pp. 1756-1768, 10.1111/1365-2664.14183

[29]

A.I. Hussain. Geodiversity of Smaquli area as a potential geopark in Kurdistan region, Iraq. International Journal of Geoheritage and Parks, 10 (4) (2022), pp. 477-490, 10.1016/j.ijgeop.2022.07.005

[30]

Q. Jiang, P. Zhou, C. Liao, Y. Liu, F. Liu.Spatial pattern of soil erodibility factor (K) as affected by ecological restoration in a typical degraded watershed of Central China. Science of the Total Environment, 749 (2020), Article 141609, 10.1016/j.scitotenv.2020.141609

[31]

F.I. Khalaf, D. Al-Ajmi. Aeolian processes and sand encroachment problems in Kuwait. Geomorphology, 6 (2) (1993), pp. 111-134, 10.1016/0169-555X(93)90042-Z

[32]

S. Kozlowski. Geodiversity: The concept and scope of geodiversity. Przegląd Geologiczny, 52 (8/2) (2004), pp. 833-837

[33]

T.M. Kusky, K.E. Cullen.Encyclopedia of earth and space science Retrieved from https://books.google.com/books?hl=en&lr=&id=vMk4t21fOvoC&oi=fnd&pg=PP1&dq=Encyclopedia+of+earth+and+space+science+&ots=5eU2obk-kA&sig=y8-nqQabL-sJQr91Qjo7PPqFW0Q (2010)

[34]

Kuwait Environmental Public Authority. Retrieved from Geographic information system. https://enterprise.emisk.org/ExploreOurEnvironment/ (2023)

[35]

Kuwait Municipality. Retrieved from Kuwait municipality—Directory of master planning. http://ud.baladia.gov.kw/main-web/masterplan/new/current.htm#.X4B3f9AzaUk (2013)

[36]

S. Lahmidi, A. Lagnaoui, T. Bahaj, A. El Adnani, D. Fadli. First inventory and assessment of the geoheritage of Zagora Province from the project Bani Geopark (south-eastern Morocco). Proceedings of the Geologists’ Association, 131 (5) (2020), pp. 511-527, 10.1016/j.pgeola.2020.05.002

[37]

X.X. Li, F. Zhang, J. Yang, M. Yang. The response of organic carbon fractions in sediment to rainfall characteristics and slope l: Based on four-years on-site monitoring data. Catena, 233 (2023), Article 107518, 10.1016/j.catena.2023.107518

[38]

T.J. Matthews. Integrating geoconservation and biodiversity conservation: Theoretical foundations and conservation recommendations in a European Union context. Geoheritage, 6 (1) (2014), pp. 57-70, 10.1007/s12371-013-0092-6

[39]

L. Melelli, F. Vergari, L. Liucci, M. Del Monte. Geomorphodiversity index: Quantifying the diversity of landforms and physical landscape. Science of the Total Environment, 584-585 (2017), pp. 701-714, 10.1016/j.scitotenv.2017.01.101

[40]

L. Merchán, A.M. Martínez-Graña, C.E. Nieto, M. Criado. Natural hazard characterisation in the Arribes Del Duero Natural Park (Spain). Land, 12 (5) (2023), p. 995, 10.3390/land12050995

[41]

A. Najwer, E. Reynard, Z. Zwoliński. Geodiversity assessment for geomorphosites management: Derborence and Illgraben, Swiss Alps. Geological Society, London, Special Publications, 530 (2023), pp. 89-106, 10.1144/SP530-2022-122

[42]

J. Nelson. Multivariate mapping: The geographic information science & technology body of knowledge (1st Quarter 2020 Edition). Association of American Geographers, Washington, DC (2020), 10.22224/gistbok/2020.1.5

[43]

W.F. Nichols, K.T. Killingbeck, P.V. August. The influence of geomorphological heterogeneity on biodiversity: II. A landscape perspective. Conservation Biology, 12 (2) (1998), pp. 371-379, 10.1046/j.1523-1739.1998.96237.x

[44]

S.A.S. Omar, S.A. Shahid. Reconnaissance soil survey for the state of Kuwait. S. Shahid, F. Taha, M. Abdelfattah (Eds.), Developments in soil classification, land use planning and policy implications, Springer, Dordrecht (2013), pp. 85-107, 10.1007/978-94-007-5332-7_3

[45]

P. Panagos, K. Meusburger, C. Ballabio, P. Borrelli, C. Alewell. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 479-480 (2014), pp. 189-200, 10.1016/j.scitotenv.2014.02.010

[46]

M. Panizza. The geomorphodiversity of the Dolomites (Italy): A key of geoheritage assessment. Geoheritage, 1 (1) (2009), pp. 33-42, 10.1007/s12371-009-0003-z

[47]

L. Pereira Balaguer, M. da Glória Motta Garcia, L. Maria de Almeida Leite Ribeiro. Combined assessment of geodiversity as a tool to territorial management: Application to southeastern coast of state of São Paulo, Brazil. Geoheritage, 14 (2) (2022), p. 60, 10.1007/s12371-022-00696-7

[48]

D.I. Pereira, P. Pereira, J. Brilha, L. Santos. Geodiversity assessment of Paraná State (Brazil): An annovative approach. Environmental Management, 52 (3) (2013), pp. 541-552, 10.1007/s00267-013-0100-2

[49]

C.D. Prosser, C.V. Burek, D.H. Evans, J.E. Gordon, V.B. Kirkbride, A.F. Rennie, C.A. Walmsley. Conserving geodiversity sites in a changing climate: management challenges and responses. Geoheritage, 2 (3) (2010), pp. 123-136, 10.1007/s12371-010-0016-7

[50]

K.G. Renard, G.R. Foster, G.A. Weesies, D.K. McCool, D.C. Yoder. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) (USDA Agriculture Handbook No.703), United States Department of Agriculture (USDA), Washington, DC (1997)

[51]

M. Saha, S.S. Sauda, H.R.K. Real, M. Mahmud.Estimation of annual rate and spatial distribution of soil erosion in the Jamuna basin using RUSLE model: A geospatial approach. Environmental Challenges, 8 (2022), Article 100524, 10.1016/j.envc.2022.100524

[52]

D.S. dos Santos, K.L. Mansur,E.R. de Arruda Jr., M. E. Dantas, E. Shinzato. Geodiversity mapping and relationship with vegetation: A regional-scale application in SE Brazil. Geoheritage, 11 (2) (2019), pp. 399-415, 10.1007/s12371-018-0295-y

[53]

A.C. Seijmonsbergen, J. Guldenaar, K.F. Rijsdijk. Exploring Hawaiian long-term insular geodiversity dynamics. Landform Analysis, 35 (2017), pp. 31-43, 10.12657/landfana.035.007

[54]

E. Serrano, P.R. Flano. Geodiversity: A theoretical and applied concept. Geographica Helvetica, 62 (3) (2007), pp. 140-147, 10.5194/gh-62-140-2007

[55]

C.E. Shannon, W. Weaver. The mathematical theory of communication. University of Illinois Press, Urbana, IL (1963)

[56]

J.P. Silva, D.I. Pereira, A.M. Aguiar, C. Rodrigues. Geodiversity assessment of the Xingu drainage basin. Journal of Maps, 9 (2) (2013), pp. 254-262, 10.1080/17445647.2013.775085

[57]

I. Stavi, S. Rachmilevitch, H. Yizhaq. Geodiversity effects on soil quality and geo-ecosystem functioning in drylands. CATENA, 176 (2019), pp. 372-380, 10.1016/j.catena.2019.01.037

[58]

U. Stepišnik, A. Trenchovska. A new quantitative model for comprehensive geodiversity evaluation: The Škocjan Caves Regional Park, Slovenia. Geoheritage, 10 (1) (2018), pp. 39-48, 10.1007/s12371-017-0216-5

[59]

J. Stevens. Bivariate choropleth maps: A how-to guide. Retrieved from https://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map/ (2015)

[60]

M. Toivanen, J. Hjort, J. Heino, H. Tukiainen, J. Aroviita, J. Alahuhta. Is catchment geodiversity a useful surrogate of aquatic plant species richness?. Journal of Biogeography, 46 (8) (2019), pp. 1711-1722, 10.1111/jbi.13648

[61]

H. Tukiainen, J. Alahuhta, R. Field, T. Ala-Hulkko, R. Lampinen, J. Hjort. Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes. Landscape Ecology, 32 (5) (2017), pp. 1049-1063, 10.1007/s10980-017-0508-9

[62]

H. Tukiainen, J.J. Bailey, R. Field, K. Kangas, J. Hjort. Combining geodiversity with climate and topography to account for threatened species richness. Conservation Biology, 31 (2) (2017), pp. 364-375, 10.1111/cobi.12799

[63]

H. Tukiainen, M. Toivanen, T. Maliniemi. Geodiversity and biodiversity. Geological Society, London, Special Publications, 530 (1) (2023), 10.1144/SP530-2022-107SP530-2022-2107

[64]

USDA-NRCS, Natural Resources Conservation Service, U.S. Department of Agriculture (USDA-NRCS). National soil survey handbook. Retrieved from https://directives.nrcs.usda.gov/sites/default/files2/1719847021/National%20Soil%20Survey%20Handbook%20%28entire%20handbook%29.pdf (1983)

[65]

H. Wang, G.-H. Zhang. Temporal variation in soil erodibility indices for five typical land use types on the Loess Plateau of China. Geoderma, 381 (2021), Article 114695, 10.1016/j.geoderma.2020.114695

[66]

W.H. Wischmeier, D.D. Smith. Predicting rainfall erosion losses: A guide to conservation planning (United States Department of Agriculture Handbook No. 537). Washington, DC:United States Department of Agriculture, Science and Education Administration (1978), 10.1029/TR039i002p00285

[67]

P.L. Zarnetske, Q.D. Read, S. Record, K.D. Gaddis, S. Pau, M.L. Hobi, … A.M. Latimer. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Global Ecology and Biogeography, 28 (5) (2019), pp. 548-556, 10.1111/geb.12887

[68]

X. Zhu, T. Li, Z. Tian, L. Qu, Y. Liang.Building pedotransfer functions for estimating soil erodibility in Southeastern China. Ecological Indicators, 145 (2022), Article 109720, 10.1016/j.ecolind.2022.109720

[69]

Z. Zwoliński, A. Najwer, M. Giardino. Methods for assessing geodiversity. E. Reynard, J. Brilha (Eds.), Geoheritage: protection, and management, Assessment, Elsevier, Amsterdam (2018), pp. 27-52, 10.1016/B978-0-12-809531-7.00002-2

PDF

3678

Accesses

0

Citation

Detail

Sections
Recommended

/