Description of an emblematic geosite in Central Spain: A large sinkhole associated with paleo-landslide in gypsum karst

Eulogio Pardo-Igúzquiza , Yoav Avni , Peter Dowd

International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (1) : 117 -132.

PDF
International Journal of Geoheritage and Parks ›› 2025, Vol. 13 ›› Issue (1) :117 -132. DOI: 10.1016/j.ijgeop.2024.09.003
Original article
research-article

Description of an emblematic geosite in Central Spain: A large sinkhole associated with paleo-landslide in gypsum karst

Author information +
History +
PDF

Abstract

Emblematic geosites are those that introduce a new geological concept or strikingly display a well-known geological concept. In this context we introduce and describe a large sinkhole in Central Spain as an emblematic geosite due to the following reasons: (1) sinkholes associated with landslides are scarce; and (2) the described sinkhole has a large size providing a spectacular example of a sinkhole associated with a landslide in gypsum escarpments and with gypsum karst. Thus, although the proposed site is neither a unique example nor a new geomorphological feature, it is a particularly nice example that, by its rare development, deserves to be classed as an emblematic geosite. The studied geosite is characteristic of and represents the most typical features of sinkholes as a geo-hazard associated with paleo-landslides in gypsum karst. High steep scarps are common in gypsum terrains created by a combination of fractures and erosion caused by the lateral migration of rivers. Mass movements, including rotational landslides, are associated with these unstable scarps. These rotational landslides generate stepped slopes with a relatively rugged topography, creating flat benches and closed depressions that can accumulate runoff water from rainfall. Depending on their altitude with respect to the river floodplain, this can result in flood water or high ground water levels after intense rainfalls. This process can activate the rapid development of underground dissolution of gypsum, developing karst conduits, caves, and hollows, which can result in a self-accelerating process of rapid growth. As a consequence, the development of large underground karst voids (whether or not saturated) may increase the probability of subsidence and collapse creating sinkholes on the surface. These sinkholes are mostly small, but the large sinkhole observed in the Miocene gypsum scarps of the Tajuña River in the south of Madrid, near Titulcia and Chinchón (Madrid province) implies that the risk of a sinkhole hazard in these geological environments must be acknowledged and reconsidered. The sinkhole should be defined as an emblematic geosite that must be preserved, studied and explained.

Keywords

emblematic geosite / gypsum karst / large sinkhole / landslides / geological hazards / Tajuña River / Madrid Basin

Cite this article

Download citation ▾
Eulogio Pardo-Igúzquiza, Yoav Avni, Peter Dowd. Description of an emblematic geosite in Central Spain: A large sinkhole associated with paleo-landslide in gypsum karst. International Journal of Geoheritage and Parks, 2025, 13(1): 117-132 DOI:10.1016/j.ijgeop.2024.09.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Alberto, M. Giardino, G. Martinotti, D. Tiranti. Geomorphological hazards related to deep dissolution phenomena in the Western Italian Alps: Distribution, assessment and interaction with human activities. Engineering Geology, 99 (3-4) (2008), pp. 147-159, 10.1016/j.enggeo.2007.11.016

[2]

A. Antić, N. Tomiç, T. Đorđević, M. Radulović, Đević. Speleologial objects becoming show caves: Evidence from the Valjevo karst area in Western Serbia. Geoheritage, 12 (2020), p. 95, 10.1007/s12371-020-00517-9

[3]

Y. Avni, N. Lensky, E. Dente, M. Shviro, R. Arav, I. Gavrieli, … G. Baer. Self-accelerated development of salt karst during flash floods along the Dead Sea coast, Israel. Journal of Geophysical Research: Earth Surface, 121 (1) (2016), pp. 17-38, 10.1002/2015JF003738

[4]

A. Bögli. Karst hydrology and physical speleology. Springer, Berlin (1980), p. 284

[5]

D.E. Bruno, B.E. Crowley, J.M. Gutak, A. Moroni, O.V. Nazarenko, K.B. Oheim, … S.O. Zorina. Paleogeography as geological heritage: Developing geosite classification. Earth-Science Reviews, 138 (2014), pp. 300-312, 10.1016/j.earscirev.2014.06.005

[6]

J.P. Calvo, M. Hoyos, J. Morales, S. Ordóñez. Neogene stratigraphy, sedimentology and raw materials of the Madrid Basin. Paleontologia i Evolució, 2 (1990), pp. 63-95

[7]

J.P. Calvo, A.M.A. Zarza, M.A.G. Del Cura. Models of miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (Central Spain). Palaeogeograrphy, Palaeoclimatology, Palaeoecology, 70 (1-3) (1989), pp. 199-214, 10.1016/0031-0182(89)90090-4

[8]

J.C. Cañavera, J.P. Calvo, S. Ordóñez, M.C. Muñoz-Cervera, S. Sánchez-Moral. Tectono-sedimentary evolution of the Madrid Basin (Spain) during the late miocene: Data from paleokarst profiles in diagenetically-complex continental carbonate. Geosciences, 10 (11) (2020), p. 433, 10.3390/geosciences10110433

[9]

F. Cucchi, F. Finocchiaro, Zini. Karst geosites in NE Italy. B. Andreo, F. Carrasco, J.J. Durán, J.W. Lamoreaux (Eds.), Advances in research in karst media, Springer, Berlin, Heidelberg (2020), pp. 393-398, 10.1007/978-3-642-12486-0_61

[10]

M.G. Culshaw, A.C. Waltham. Natural and artificial cavities as ground engineering hazards. Quaterly Journal of Engineering Geology, 20 (2) (1987), pp. 139-150, 10.1144/gsl.qjeg.1987.020.02.04

[11]

G. De Vicente, A. Muñoz-Martín. The Madrid Basin and the central system: A tectonostratigraphic analysis from 2D seismic lines. Tectonophysics, 602 (2013), pp. 259-285, 10.1016/j.tecto.2012.04.003

[12]

G. De Vicente, R. Vegas, A. Muñoz Martín, P.G. Silva, P. Andriessen, S. Cloetingh, … A. Olaiz. Cenozoic thick-skinned deformation and topography evolution of the Spanish Central System. Global and Planetary Change, 58 (2007), pp. 335-381, 10.1016/j.gloplacha.2006.11.042

[13]

J. De Waele, F. Gutiérrez. Karst hydrogeology geomorphology and caves. John Wiley & Sons Ltd., Hoboken, NJ (2022), p. 888, 10.1002/9781119605379

[14]

D.H. Doctor, K.Z. Doctor. Spatial analysis of geologic and hydrologic features relating to sinkhole occurrence in Jefferson County, West Virginia. Carbonates and Evaporites, 27 (2) (2013), pp. 143-152, 10.1007/s13146-012-0098-1

[15]

S. Filin, Y. Avni, A. Baruch, S. Morik, R. Arav, S. Marco. Characterization of land degradation along the receding Dead Sea coastal zone using airborne laser scanning. Geomorphology, 206 (2014), pp. 403-420, 10.1016/j.geomorph.2013.10.013

[16]

S. Filin, A. Baruch, S. Morik, Y. Avni, S. Marco. Use of airborne laser scanning to characterise land degradation processes-the Dead Sea as a case study. Survey Review, 44 (325) (2012), pp. 84-90, 10.1179/1752270611Y.0000000001

[17]

D.C. Ford, P.F. Williams. Karst hydrogeology and geomorphology. John Wiley & Sons Ltd., Hoboken, NJ (2007), 10.1002/9781118684986

[18]

J. Garrote, G. Garzón-Heydt, R.T. Cox. Multi-stream order analyses in basin asymmetry: A tool to discriminate the influence of neotectonics in fluvial landscape development (Madrid Basin, Central Spain). Geomorphology, 102 (1) (2008), pp. 130-144, 10.1016/j.geomorph.2007.07.023

[19]

J.L. Giner Robles, G. de Vicente, J.M. González Casado. Neotectónica del borde oriental de la Cuenca de Madrid [N eoteetonics of the eastern border of the Madrid Basin]. Cuadernos do Laboratorio Xeoloxico de Laxe, 19 (1994), pp. 191-202

[20]

E. Gökkaya, F. Gutiérrez, M. Ferk, T. Görüm.Sinkhole developments in the Sivas gypsum karst, Turkey. Geomorphology, 386 (2021), Article 107746, 10.1016/j.geomorph.2021.107746

[21]

Grupo de Espeleología de Getafe (GEGET). Cuevas, Simas y Minas de Madrid [Caves, chasms and mines of Madrid]. Ediciones Librería, Madrid (2016), p. 30

[22]

J. Guerrero, F. Gutiérrez. Gypsum scarps and asymmetric valleys in evaporitic terrains. The role of river migration, landslides, karstification and lithology (Ebro River, NE Spain). Geomorphology, 297 (2017), pp. 137-152, 10.1016/j.geomorph.2017.09.018

[23]

F. Gutiérrez, A. Benito-Calvo, D. Carbonel, G. Desir, J. Sevil, J. Guerrero, … I. Fabregat. Review on sinkhole monitoring and performance of remediation measures by high-precision leveling and terrestrial laser scanner in the salt karst of the Ebro Valley, Spain. Engineering Geology, 248 (2019), pp. 283-308, 10.1016/j.enggeo.2018.12.004

[24]

F. Gutiérrez, A.H. Cooper, K.S. Johnson. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environmental Geology, 53 (5) (2007), pp. 1007-1022, 10.1007/s00254-007-0728-4

[25]

F. Gutiérrez, J.P. Galve, P. Lucha, C. Castañeda, J. Bonachea, J. Guerrero. Integrating geomorphological mapping trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology, 134 (1-2) (2011), pp. 144-156, 10.1016/j.geomorph.2011.01.018

[26]

F. Gutiérrez, I. Lizaga. Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservois: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran. Geomorphology, 254 (2016), pp. 88-103, 10.1016/j.geomorph.2015.11.020

[27]

F. Gutiérrez, M. Parise, J. De Waele, H. Jourde. A review on natural and human-induced geohazards and impacts in karst. Earth Science Reviews, 138 (2014), pp. 61-88, 10.1016/j.earscirev.2014.08.002

[28]

F. Gutiérrez, J. Sevil, P. Migón. Landslides in the Remolinos gypsum escarpment (NE Spain). Controls imposed by stratigraphy, fluvial erosion and interstratal salt dissolution. Landslides, 20 (10) (2023), pp. 2075-2093, 10.1007/s10346-023-02090-y

[29]

M.H. Henriques, R. Pena dos Reis, J. Brilha, T. Mota. Geoconservation as an emerging geoscience. Geoheritage, 3 (2) (2011), pp. 117-128, 10.1007/s12371-011-0039-8

[30]

L.M. Highland, P. Bobrowsky.The landslide handbook—A guide to understanding landslides (U.S. Geological Survey Circular 1325). U.S. Geological Survey, Washington, DC (2008)

[31]

J.N. Jennings. Karst geomorphology (p. 293). Blackwell, New York (1985)

[32]

G. Kaufmann. Geophysical mapping of solution of collapse sinkholes. Journal of Applied Geophysics, 111 (2014), pp. 271-288, 10.1016/j.jappgeo.2014.10.011

[33]

C. Martin Escorza. Las grandes estructuras neotectónicas de la Cuenca cenozoica de Madrid [The great neotectonic structures of the Cenozoic basin of Madrid]. Estudios Geológicos, 36 (3-4) (1980), pp. 247-253

[34]

J.D. Martinez, K.S. Johnson, J.T. Neal. Sinkholes in evaporite rocks. American Scientist, 86 (1) (1998), pp. 38-51, 10.1511/1998.1.38

[35]

E. Pardo-Igúzquiza, J.J. Durán, P.A. Dowd. Automatic detection and delineation of karst terrain depressions and its application in geomorphological mapping and morphometric analysis. Acta Carsologica, 42 (1) (2013), pp. 17-24, 10.3986/ac.v42i1.637

[36]

M. Parise. Sinkholes. W.B. White D.C. Culver T. Pipan (Eds.), Encyclopediaof caves (3rd ed.), Elsevier, Amsterdam (2019), pp. 934-942, 10.1016/B978-0-12-814124-3.00110-2

[37]

M. Parise. Sinkholes, subsidence and related mass movements. J.F. Shroder (Ed.),Treatise on geomorphology, Vol. 5, Elsevier, Amsterdam (2022), pp. 200-220, 10.1016/B978-0-12-818234-5.00029-8

[38]

A. Pérez-González. Estudio de los procesos de hundimiento en el Valle del río Jarama y sus terrazas (nota preliminar) [Study of the subsidence processes in the Jarama river valley and its terraces (preliminary note)]. Estudios Geológicos, 27 (1971), pp. 317-324

[39]

E. Reynard, F. Hobléa, N. Cayla, C. Gauchon. Iconic sites for alpine geology and geomorphology. Journal of Alpine Research, 99-2 (2011), pp. 1-14

[40]

D.A. Ruban. Quantification of geodiversity and its loss. Proceedings of the Geologists’ Association, 121 (3) (2010), pp. 326-333, 10.1016/j.pgeola.2010.07.002

[41]

P. Silva, J.L. Goy, C. Zazo. Evolución geomorfológica de la confluencia de los ríos Jarama y Tajuña durante el Cuaternario (Cuenca de Madrid, España) [Geomorphic evolution at the confluence of Jarama River and Tajuña River during the Quaternary period (Madrid Basin, Spain)]. Cuaternario y Geomorfologia, 2 (1-4) (1988), pp. 125-133 https://digital.csic.es/handle/10261/249981

[42]

M.M. Sweeting. Karst landforms (p. 362). MacMillan Press, London (1972)

[43]

K. Taheri, F. Gutiérrez, H. Mohseni, E. Raeisi, M. Taheri. Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude-frequency relationships: A case study in Hamadan province, Iran. Geomorphology, 234 (2015), pp. 64-79, 10.1016/j.geomorph.2015.01.005

[44]

K. Taheri, T.M. Missimer, M. Bayatvarkeshi, S. Mahmoudi Sivand, S. Fathi, A. Toranjian, B. Dehghan Manshadi. An intrinsic vulnerability approach to assess anoverburden alluvial aquifer exposure to sinkhole-pronearea; results from a Central Iran case study. Geocarto International, 38 (1) (2023), Article 2168068, 10.1080/10106049.2023.2168068

[45]

K. Taheri, H. Shahabi, K. Chapi, A. Shirzadi, F. Gutiérrez, K. Khosravi. Sinkhole susceptibility mapping: A comparison between Bayes-based machine learning algorithms. Land Degradation & Development, 30 (7) (2019), pp. 730-745, 10.1002/ldr.3255

[46]

P.C. Tsui, D.M. Cruden. Deformation associated with gypsum karst in the salt river escarpment, northeastern Alberta. Canadian Journal of Earth Sciences, 21 (8) (1984), pp. 949-959, 10.1139/e84-099

[47]

D. Uribelarrea del Val. Dinámica y evolución de las llanuraras aluviales de los ríos Manzanares, Jarama y Tajo, entre las ciudades de Madrid y Toledo [Dynamics and evolution of the alluvial plains of the Manzanares, Jarama and Tagus rivers, between the cities of Madrid and Toledo] (Doctoral dissertation) Universidad Complutense de Madrid, Madrid, Spain (2008)

[48]

T. Waltham, F. Bell, M.G. Culshaw. Sinkholes and subsidence: Karst and cavernous rocks in engineering and construction. Springer, Berlin, Heidelberg (2005)

[49]

W.B. White. Geomorphology and hydrology of karst terrains. Oxford University Press, New York, Oxford (1988), p. 464

[50]

P.W. Williams. The role of subcutaneous zone in karst hydrology. Journal of Hydrology, 61 (1-3) (1983), pp. 45-67, 10.1016/0022-1694(83)90234-2

[51]

P.W. Williams. Dolines. J. Gunn (Ed.), Encyclopedia of caves and karst science, Routledge, New York (2003), pp. 304-310

[52]

Williams P.W. (2004) Dolines. In: GunnJ.(Ed.), Encyclopedia of Caves and Karst Science (pp.304-310). New York: Fitzroy Dearborn.

[53]

V. Zumpano, L. Pisano, M. Parise. An integrated framework to identify and analyze karst sinkholes. Geomorphology, 332 (2019), pp. 213-225, 10.1016/j.geomorph.2019.02.013

PDF

280

Accesses

0

Citation

Detail

Sections
Recommended

/