Creating a sense of intangible science: Making it understandable to a broad public via geoheritage

Rasia Shajahan , Benjamin van Wyk de Vries , Elena Zanella , Andrew Harris

International Journal of Geoheritage and Parks ›› 2024, Vol. 12 ›› Issue (3) : 396 -415.

PDF
International Journal of Geoheritage and Parks ›› 2024, Vol. 12 ›› Issue (3) :396 -415. DOI: 10.1016/j.ijgeop.2024.07.007
Research article
research-article

Creating a sense of intangible science: Making it understandable to a broad public via geoheritage

Author information +
History +
PDF

Abstract

The methods and result of scientific studies are often difficult to understand for non-specialists due to their esoteric nature. Such lack of understanding means that such work is removed from our normal life experience, and thus, the applicability, interest and use of such work can be minimal. The communication of geoscience finds a natural conduit through geoheritage. A good example of an inaccessible technique far removed from everyday experience is anisotropy of magnetic susceptibility (AMS), an extremely useful geoscience technique with many applications, including finding strain and flow directions in rocks. We explored here how to make “AMS” understandable, using three different volcanic sites where the flow of molten rock is an important aspect, each situated in different types of geoheritage visitation context (wild trekkers, beach visitors, and walkers). The method we developed and tested follows the production of simple and adapted explanations, and is coupled with geoheritage inventorying and communication. We utilized the tangible geological features of outcrops, as well as intangible elements such as rock magnetic data, and conducted a geoheritage inventory using the modified geosite assessment model (M-GAM) to create narratives for popular comprehension. The M-GAM analysis has identified the geosites of the San Bartolo lava flow of the Stromboli volcano for the communication of AMS. Later, a simple and comprehensible definition of AMS and thus of the flow processes was created using a step-by-step process. This method could be useful for scientific studies to allow them to reach out to a wider public, using their input in the simple explanation stage to con-construct a narrative. This would provide a way for science to be more widely appreciated, useful and applicable.

Keywords

geosites / inventory / anisotropy of magnetic susceptibility / modified geosite assessment model / science communication

Cite this article

Download citation ▾
Rasia Shajahan, Benjamin van Wyk de Vries, Elena Zanella, Andrew Harris. Creating a sense of intangible science: Making it understandable to a broad public via geoheritage. International Journal of Geoheritage and Parks, 2024, 12(3): 396-415 DOI:10.1016/j.ijgeop.2024.07.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Allan, R.K. Dowling, D. Sanders. The motivations for visiting geosites: The case of crystal cave, Western Australia. Geojournal of Tourism and Geosites, 16 (2015), pp. 141-152

[2]

S. Arrighi, M. Rosi, J.-C. Tanguy, V. Courtillot. Recent eruptive history of Stromboli (Aeolian Islands, Italy) determined from high-accuracy archeomagnetic dating. Geophysical Research Letters, 31 (19) (2004), p. L19603, 10.1029/2004GL020627

[3]

J.C. Besson. Les formations volcaniques du versant oriental du massif du Mont-dore (massif central français):(Feuille 1/25 000 Veyre-Montonn° 5-6) [The volcanic formations on the eastern slope of the Mont-Dore Massif (French Massif Central): (Sheet 1/25,000 Veyre-Monton no. 5-6)] (Doctoral dissertation) Université de Clermont-Ferrand, France (1978)

[4]

L. Bityukova, R. Scholger, M. Birke. Magnetic susceptibility as indicator of environmental pollution of soils in Tallinn. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24 (9) (1999), pp. 829-835, 10.1016/S1464-1895(99)00122-2

[5]

F. Bonali, E. Russo, F. Vitello, V. Antoniou, F. Marchese, L. Fallati, V. Bracchi, N. Corti, A. Savini, M. Whitworth, K. Drymoni. How academics and the public experienced immersive virtual reality for geo-education. Geosciences, 12 (1) (2021), p. 9, 10.3390/geosciences12010009

[6]

G.J. Borradaile, M. Jackson. Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks. Geological Society, London, Special Publications, 238 (1) (2004), pp. 299-360, 10.1144/GSL.SP.2004.238.01.18

[7]

J.L. Bouchez. Granite is never isotropic: An introduction to AMS studies of granitic rocks. J.L. Bouchez, D.H.W. Hutton, W.E. Stephens (Eds.), Granite: From segregation of melt to emplacement fabrics, Vol. 8, Springer, Dordrecht (1997), pp. 95-112, 10.1007/978-94-017-1717-5_6

[8]

S. Božić, N. Tomić. Canyons and gorges as potential geotourism destinations in Serbia: Comparative analysis from two perspectives—general geotourists’ and pure geotourists’. Open Geosciences, 7 (1) (2015), pp. 531-546, 10.1515/geo-2015-0040

[9]

S. Branca, M. Coltelli, E. De Beni, J. Wijbrans. Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. International Journal of Earth Sciences, 97 (1) (2008), pp. 135-152, 10.1007/s00531-006-0152-0

[10]

S. Branca, M. Coltelli, G. Groppelli, F. Lentini. Geological map of Etna volcano, 1:50,000 scale. Italian Journal of Geosciences, 130 (3) (2011), pp. 265-291, 10.3301/IJG.2011.15

[11]

R. Brousse.Magmatologie du volcanisme néogène et quaternaire du massif central in symposium Géologie, géomorphologie et structure profonde du massif central Français [Magmatology of Neogene and quaternary volcanism of the massif central in the symposium on geology, geomorphology, and deep structure of the French massif central] (pp.377-478). Plein Air Service, Clermont-Ferrand (1971)

[12]

S. Calvari, E. Marotta, A. Vicari, N.A. Famiglietti, G. Ganci, L. Miraglia, … R. Peluso. The San Bartolo lava flow field along the northeast flank of Stromboli Volcano: A preliminary study for field survey. (2023), 10.5281/ZENODO.7760868

[13]

E. Cañón-Tapia, M.J. Chávez-Álvarez. Theoretical aspects of particle movement in flowing magma: Implications for the anisotropy of magnetic susceptibility of dykes. Geological Society, London, Special Publications, 238 (1) (2004), pp. 227-249, 10.1144/GSL.SP.2004.238.01.15

[14]

J. Dóniz-Páez, E. Beltrán-Yanes, R. Becerra-Ramírez, N.M. Pérez, P.A. Hernández, W. Hernández. Diversity of volcanic geoheritage in the Canary Islands, Spain. Geosciences, 10 (10) (2020), p. 390, 10.3390/geosciences10100390

[15]

R.K. Dowling. Geotourism’s global growth. Geoheritage, 3 (1) (2011), pp. 1-13, 10.1007/s12371-010-0024-7

[16]

B.B. Ellwood. Application of the anisotropy of magnetic susceptibility method as an indicator of bottom-water flow direction. Marine Geology, 34 (3-4) (1980), pp. M83-M90, 10.1016/0025-3227(80)90066-3

[17]

C. Ferlito, E. Nicotra. The dyke swarm of Mount Calanna (Etna, Italy): An example of the uppermost portion of a volcanic plumbing system. Bulletin of Volcanology, 72 (10) (2010), pp. 1191-1207, 10.1007/s00445-010-0398-z

[18]

L. Ferrari, S. Calvari, M. Coltelli, F. Innocenti, G. Pasquarè, M. Pompilio, … I. Villa. Nuovi dati geologici e strutturali sulla Valle di Calanna, Etna: implicazioni per l’evoluzione del vulcanismo etneo [New geological and structural data on the Calanna Valley, Etna: implications for the evolution of Etna’s volcanism]. Bollettino della Società Entomologica Italiana, 2 (1989), pp. 849-860

[19]

M.D. Fuller. Magnetic anisotropy and paleomagnetism. Journal of Geophysical Research, 68 (1) (1963), pp. 293-309, 10.1029/JZ068i001p00293

[20]

J.W. Graham. Magnetic anisotropy, an unexploited petrofabric element. Geological Society of America Bulletin, 65 (1954), pp. 1257-1258

[21]

S. Granados-Bolaños, A. Quesada-Román, G.E. Alvarado.Low-cost UAV applications in dynamic tropical volcanic landforms. Journal of Volcanology and Geothermal Research, 410 (2021), Article 107143, 10.1016/j.jvolgeores.2020.107143

[22]

L. Granar. Magnetic measurements on Swedish varved sediments. Arkiv för Geofysik, 3 (1) (1958), pp. 1-40

[23]

M.N. Guilbaud, M.D.P. Ortega-Larrocea, S. Cram, B. van Wyk de Vries. Xitle volcano geoheritage, Mexico City: Raising awareness of natural hazards and environmental sustainability in active volcanic areas. Geoheritage, 13 (1) (2021), p. 6, 10.1007/s12371-020-00525-9

[24]

L. Gurioli, M.T. Pareschi, E. Zanella, R. Lanza, E. Deluca, M. Bisson. Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii. Geology, 33 (6) (2005), pp. 441-444, 10.1130/G21294.1

[25]

V. Jelinek. Characterization of the magnetic fabric of rocks. Tectonophysics, 79 (3-4) (1981), pp. T63-T67, 10.1016/0040-1951(81)90110-4

[26]

V. Jonić. Comparative analysis of Devil’s town and Bryce canyon geosites by applying the modified geosite assessment model (M-GAM). Zbornik Radova Departmana Za Geografiju, Turizam i Hotelijerstvo, 47-2 (2018), pp. 113-125, 10.5937/ZbDght1802113J

[27]

D.V. Kent, W. Lowrie. On the magnetic susceptibility anisotropy of deep-sea sediment. Earth and Planetary Science Letters, 28 (1) (1975), pp. 1-12, 10.1016/0012-821X(75)90067-9

[28]

K. Khalifa. The role of explanation in understanding. The British Journal for the Philosophy of Science, 64 (1) (2013), pp. 161-187, 10.1093/bjps/axr057

[29]

M.A. Khan. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. Journal of Geophysical Research, 67 (7) (1962), pp. 2873-2885, 10.1029/JZ067i007p02873

[30]

L. Lesage.Étude morphologique, pétrologique et géochimique des coulées de laves de Thônes le Vieux et de Farges [Morphological, petrological, and geochemical study of the lava flows of Thônes le Vieux and Farges] (Master’s thesis). Université Blaise Pascal, Clermont-Ferrand, France (2013)

[31]

S. Li, Z. Shen, Y. Najman, C. Deng, R. Zhu. Anisotropy of magnetic susceptibility (AMS) analysis of the Gonjo Basin as an independent constraint to date Tibetan shortening pulses. Geophysical Research Letters, 47 (8) (2020), Article e2020GL087531

[32]

S. Loock, H. Diot, B. Van Wyk De Vries, P. Launeau, O. Merle, F. Vadeboin, M.S. Petronis. Lava flow internal structure found from AMS and textural data: An example in methodology from the Chaîne des Puys, France. Journal of Volcanology and Geothermal Research, 177 (4) (2008), pp. 1092-1104, 10.1016/j.jvolgeores.2008.08.017

[33]

G. Matasova, E. Petrovský, N. Jordanova, V. Zykina, A. Kapička. Magnetic study of late Pleistocene loess/palaeosol sections from Siberia: Palaeoenvironmental implications. Geophysical Journal International, 147 (2) (2001), pp. 367-380, 10.1046/j.0956-540x.2001.01544.x

[34]

W.J. McGuire. Evolution of the Etna volcano: Information from the southern wall of the Valle Del Bove caldera. Journal of Volcanology and Geothermal Research, 13 (3-4) (1982), pp. 241-271, 10.1016/0377-0273(82)90053-1

[35]

K. Németh, T. Casadevall, M.R. Moufti, J. Marti. Volcanic geoheritage. Geoheritage, 9 (3) (2017), pp. 251-254, 10.1007/s12371-017-0257-9

[36]

E. Nicotra, C. Ferlito, M. Viccaro, R. Cristofolini. Volcanic geology and petrology of the Val Calanna succession (Mt. Etna, Southern Italy): Discovery of a new eruptive center. Periodico di Mineralogia, 80 (2) (2011), pp. 287-307, 10.2451/2011PM0021

[37]

M.S. Petronis, A. Delcamp, B. Van Wyk De Vries. Magma emplacement into the Lemptégy scoria cone (Chaîne des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and paleomagnetic data. Bulletin of Volcanology, 75 (10) (2013), p. 753, 10.1007/s00445-013-0753-y

[38]

M.S. Petronis, B. Van Wyk De Vries, D. Garza. The leaning Puy de Dôme (Auvergne, France) tilted by shallow intrusions. Volcanica, 2 (2) (2019), pp. 161-189, 10.30909/vol.02.02.161186

[39]

D.K. Potter, A. Stephenson. Single-domain particles in rocks and magnetic fabric analysis. Geophysical Research Letters, 15 (10) (1988), pp. 1097-1100, 10.1029/GL015i010p01097

[40]

A. Quesada-Román, D. Pérez-Umaña. Tropical paleoglacial geoheritage inventory for geotourism management of Chirripó National Park, Costa Rica. Geoheritage, 12 (3) (2020), p. 58, 10.1007/s12371-020-00485-0

[41]

A. Quesada-Román, L. Torres-Bernhard, M.A. Ruiz-Álvarez, M. Rodríguez-Maradiaga, G. Velázquez-Espinoza, C. Espinosa-Vega, … H. Rodríguez-Bolaños. Geodiversity, geoconservation, and geotourism in Central America. Land, 11 (1) (2021), p. 48, 10.3390/land11010048

[42]

M.E. Quesada-Valverde, A. Quesada-Román. Worldwide trends in methods and resources promoting geoconservation, geotourism, and geoheritage. Geosciences, 13 (2) (2023), p. 39, 10.3390/geosciences13020039

[43]

P. Rochette, C. Aubourg, M. Perrin. Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics, 307 (1-2) (1999), pp. 219-234, 10.1016/S0040-1951(99)00127-4

[44]

R. Romano. Succession of the volcanic activity in the Etnean area. Memorie della Societa Geologica Italiana, 23 (1982), pp. 27-48

[45]

R. Romano, J. Guest. Volcanic geology of the summit and northern flank of Mount Etna, Sicily. Bollettino della Societa Geologica Italiana, 98 (2) (1979), pp. 189-215

[46]

R. Shajahan, A. Harris, S. Mana, E. Nicotra, C.R. Test, … E. Zanella.Emplacement and flow dynamics in a small volcanic dyke swarm: The example of Mount Calanna (Etna, Italy). Journal of Volcanology and Geothermal Research, 449 (2024), p. 108069, 10.1016/j.jvolgeores.2024.108069

[47]

R. Shajahan, A.J. Harris, E. Zanella, L. Gurioli, C.R. Test, S. Calvari, L. Drovanti. When the lava meets the sea: Emplacement of the 2-4 ka San Bartolo lava flow field, Stromboli volcano (Italy). Bulletin of Volcanology, 86 (5) (2024), pp. 1-24, 10.1007/s00445-024-01743-7

[48]

F. Speranza, M. Pompilio, F. D’Ajello Caracciolo, L. Sagnotti. Holocene eruptive history of the Stromboli volcano: Constraints from paleomagnetic dating. Journal of Geophysical Research: Solid Earth, 113 (B9) (2008), p. B09101, 10.1029/2007JB005139

[49]

D.A. Suzuki, H. Takagi. Evaluation of geosite for sustainable planning and management in geotourism. Geoheritage, 10 (1) (2018), pp. 123-135, 10.1007/s12371-017-0225-4

[50]

D. Tarling, F. Hrouda. Magnetic anisotropy of rocks. Springer Science & Business Media, Dordrecht (1993)

[51]

N. Tomić, S. Božić. A modified geosite assessment model (M-GAM) and its application on the lazar canyon area (Serbia). International Journal of Environmental Research, 8 (4) (2014), pp. 1041-1052

[52]

P.M. Vincent. Volcanisme et chambres magmatiques: l’exemple des Monts Dore [Volcanism and magma chambers: The example of the Monts Dore]. Mémoires de la Société Géologique de France, 10 (1980), pp. 71-85

[53]

E. Zanella, L. Gurioli, M.T. Pareschi, R. Lanza. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications. Journal of Geophysical Research: Solid Earth, 112 (B5) (2007), p. B05214, 10.1029/2006JB004775

[54]

Z.M. Zhu, S.H. Zhang, C.Y. Tang, H.Y. Li, S.C. Xie, J.L. Ji, G.Q. Xiao. Magnetic fabric of stalagmites and its formation mechanism. Geochemistry, Geophysics, Geosystems, 13 (6) (2012), p. Q06006, 10.1029/2011GC003869

PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

/