Impact of landslide on geoheritage: Opportunities through integration, geomorphological classification and machine learning

Mohammad Al’Afif , Junun Sartohadi , Guruh Samodra

International Journal of Geoheritage and Parks ›› 2024, Vol. 12 ›› Issue (2) : 333 -351.

PDF
International Journal of Geoheritage and Parks ›› 2024, Vol. 12 ›› Issue (2) :333 -351. DOI: 10.1016/j.ijgeop.2024.05.002
Research article
research-article

Impact of landslide on geoheritage: Opportunities through integration, geomorphological classification and machine learning

Author information +
History +
PDF

Abstract

Landslides are widely understood to cause damage to the geological features and the surrounding environment. Our study focuses on the northern region of the Karangsambung-Karangbolong Geopark (KKNG), characterized by diverse lithology and multi-phase tectonics. This study aims to explore (i) landslide susceptibility assessment, (ii) geomorphological characteristics and distribution of landslide susceptibility, and (iii) identification of landslide impacts on geosites. We mapped morphogenesis, morphology, materials, and processes to understand the geomorphological context, identifying three primary landforms: structural, pediments, and fluvial. For landslide susceptibility mapping, we used the XGBoost algorithm with cross-validation and utilized the area under the receiver operating characteristic curve (AUROC) for model validation. The XGBoost model revealed a high susceptibility classification for 10 geosite points. Landslides have negative impacts, such as Olistoliths of coral limestones, Exotic-blocks of chert, and calcareous red claystone that change landforms and damage outcrops. Nevertheless, some landslides have positive impacts on the geosite, such as Exotic-blocks of phyllites, and Exotic-blocks of pillow lava and radiolarian chert, because landslides can reveal fresher outcrops and rock structures, and the outcrop area becomes larger. Landslide mapping has successfully identified geosites that are highly vulnerable and have adverse impacts, especially those with certain lithological characteristics. This research on viewing disaster as a harmful process has evolved into a more holistic view of the disaster. This view includes various positive aspects that involve understanding the complex interactions between geology and geomorphology towards the geosite. By understanding the relationship between geomorphologic features (morphology, material, process, morpho-arrangement) and landslide occurrence, effective management strategies can be implemented to develop geological heritage further.

Keywords

landslide / geomorphology / machine learning / opportunities / geoheritage

Cite this article

Download citation ▾
Mohammad Al’Afif, Junun Sartohadi, Guruh Samodra. Impact of landslide on geoheritage: Opportunities through integration, geomorphological classification and machine learning. International Journal of Geoheritage and Parks, 2024, 12(2): 333-351 DOI:10.1016/j.ijgeop.2024.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aditian A., Kubota T., & Shinohara Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101-111. https://doi.org/10.1016/j.geomorph.2018.06.006.

[2]

Afif M. A., Wibowo D. A., Raharjo P. D., Winduhutomo S., & Puswanto E. (2021). UAV (unmanned aerial vehicle) for landslide analysis case study in Grenggeng Vil-lage, Kebumen District, Central Java. IOP Conference Series: Earth and Environmental Science, 887(1), 012036. https://doi.org/10.1088/1755-1315/887/1/012036.

[3]

Ali S. A., Khatun R., Ahmad A., & Ahmad S. N. (2019). Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, India. Modeling Earth Systems and Environment, 5(3), 1083-1102. https://doi.org/10.1007/s40808-019-00593-z.

[4]

Alvioli M., Marchesini I., Reichenbach P., Rossi M., Ardizzone F., Fiorucci F., & Guzzetti F. (2016). Automatic delineation of geomorphological slope units with r. slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geoscientific Model Development, 9(11), 3975-3991. https://doi.org/10.5194/gmd-9-3975-2016.

[5]

Ansori C., Setiawan N. I., Warmada I. W., & Yogaswara H. (2022). Identification of geodiversity and evaluation of geosites to determine geopark themes of the Karangsambung-Karangbolong National Geopark, Kebumen, Indonesia. International Journal of Geoheritage and Parks, 10(1), 1-15. https://doi.org/10.1016/j.ijgeop.2022.01.001.

[6]

Asikin, Sukendar (1974). Evolusi Geologi Jawa Tengah dan sekitarnya Ditinjau dari Segi Teori Tektonik-Dunia yang Baru [Geological evolution of Central Java and its sur-roundings in terms of the new world tectonic theory] Doctoral dissertation). Department of Geology, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung. https://doi.org/10.31227/osf.io/uftde.

[7]

Asikin S., Handoyo A., Busono H., & Gafoer S. (1992). Peta geologi skala 100.000 lembar Kebumen [Geological map at a scale of 1: 100,000 sheet of Kebumen]. Bandung: Geological Research and Development Center.

[8]

Ayalew L., & Yamagishi H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31. https://doi.org/10.1016/j.geomorph.2004.06.010.

[9]

Bachri S., Stötter J., Monreal M., & Sartohadi J. (2015). The calamity of eruptions, or an eruption of benefits? Mt. Bromo human-volcano system a case study of an open-risk perception. Natural Hazards and Earth System Sciences, 15(2), 277-290. https://doi.org/10.5194/nhess-15-277-2015.

[10]

Banham S. G., Gupta S., Rubin D. M., Bedford C. C., Edgar L. A., Bryk A. B.,... Vasavada A. R. (2022). Evidence for fluctuating wind in shaping an ancient Martian dune field: The Stimson formation at the Greenheugh pediment, Gale crater. Journal of Geophysical Research: Planets, 127(9), e2021JE007023. https://doi.org/10.1029/2021JE007023.

[11]

Bergstra J., & Bengio Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281-305. BNPB ( 2022). Indonesian disaster information data. Retrieved from https://dibi.bnpb.go.id.

[12]

Brock J., Schratz P., Petschko H., Muenchow J., Micu M., & Brenning A. (2020). The performance of landslide susceptibility models critically depends on the quality of digital elevation models. Geomatics, Natural Hazards and Risk, 11(1), 1075-1092. https://doi.org/10.1080/19475705.2020.1776403.

[13]

Cascini L. (2008). Applicability of landslide susceptibility and hazard zoning at different scales. Engineering Geology, 102(3-4), 164-177. https://doi.org/10.1016/j.enggeo.2008.03.016.

[14]

Chen T., & Guestrin C. (2016). XGBoost:A scalable tree boosting system. In Y.Guo, & F.Farooq (Proceedings of the ACM SIGKDD International Conference on Knowl-edge Discovery and Data Mining.Eds.), New York: Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785.

[15]

Chigira M., & Yagi H. (2006). Geological and geomorphological characteristics of landslides triggered by the 2004 mid Niigta Prefecture Earthquake in Japan. Engineering Geology, 82(4), 202-221. https://doi.org/10.1016/j.enggeo.2005.10.006.

[16]

Cui S., Wu H., Pei X., Yang Q., Huang R., & Guo B. (2022). Characterizing the spatial distribution, frequency, geomorphological and geological controls on landslides triggered by the 1933 Mw 7.3 Diexi Earthquake, Sichuan, China. Geomorphology, 403, 108177. https://doi.org/10.1016/J.GEOMORPH.2022.108177.

[17]

Fawcett T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010.

[18]

Gray M. (2013). Geodiversity: Valuing and conserving abiotic nature (2nd ed.). Chichester: Wiley-Backwell.

[19]

Guo X., Fu B., Du J., Shi P., Chen Q., & Zhang W. (2021). Applicability of susceptibility model for rock and loess earthquake landslides in the eastern Tibetan Plateau. Remote Sensing, 13(13), 2546. https://doi.org/10.3390/rs13132546.

[20]

Hadmoko D. S., Lavigne F., & Samodra G. (2017). Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia. Natural Hazards, 87(1), 437-468. https://doi.org/10.1007/s11069-017-2772-z.

[21]

Hadrien J. (2020). Essential math for data science. Sebastopol: O’Reilly Media.

[22]

Hamilton W.B (1979). Tectonics of the Indonesian region (Professional Paper 1078). Washington, DC: U.S. Goverment Print Office. https://doi.org/10.3133/pp1078.

[23]

Handoyo Harsolumakso A., Sapiie B., Zain Tuakia M., Harsolumakso A. H., Tuakia Z., Yudha R. I., & Ulo Mélange L. (2016). Luk Ulo Melange Complex, Central Java, Indonesia: Characteristics, origin and tectonic significance. Beijing: Asia Oceania Geoscience Society. https://doi.org/10.13140/RG.2.2.14457.26728.

[24]

Hearn G. J., & Hart A. B. (2011). Geomorphological contributions to landslide risk assessment. Developments in Earth Surface Processes, 15, 107-148. https://doi.org/10.1016/B978-0-444-53446-0.00005-7.

[25]

Jordan M. M. (2019). Historical floodplain sedimentation rates using mining contaminant profiles, Cesium-137, and sediment source indicators along the Lower Big River, Jefferson County, Missouri. Retrieved from https://bearworks.missouristate.edu/theseshttps://bearworks.missouristate.edu/theses/3408/.

[26]

Joseph V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 531-538. https://doi.org/10.1002/sam.11583.

[27]

Kadarusman A., Massonne H. -J., van Roermund H., Permana H., & Munasri. (2007). P-T evolution of eclogites and blueschists from the Luk Ulo Complex of Central Java, Indonesia. International Geology Review, 49(4), 329-356. https://doi.org/10.2747/0020-6814.49.4.329.

[28]

Ketner K. B., Kastowo Modjo S., Naeser C. W., Obradovich J. D., Robinson K., & Suptandar T. (1976). Pre-Eocene rocks of Java, Indonesia. Journal of Research of the U.S. Geological Survey, 4(5), 605-614. http://pubs.er.usgs.gov/publication/70156660.

[29]

Krisnabudhi A., Rachman M. G., Rahmanto B., Hapsoro S. E., Sulaeman H. I., Imam R., & Pratama R. (2015). Tectonic event trailing based on fragments of Waturanda Formation, Wadasmalang, Central Java. Retrieved from https://www.researchgate.net/publication/322900050.

[30]

Kuhn M., & Silge J. (2022). Tidy modeling with R (1st ed.). Sebastopol: O’Reilly Media.

[31]

Liu Y., Qiu H., Yang D., Liu Z., Ma S., Pei Y., Zhang J., & Tang B. (2022). Deformation responses of landslides to seasonal rainfall based on InSAR and wavelet analysis. Landslides, 19(1), 199-210. https://doi.org/10.1007/s10346-021-01785-4.

[32]

Liu Z., Gilbert G., Cepeda J. M., Lysdahl A. O. K., Piciullo L., Hefre H., & Lacasse S. (2021). Modelling of shallow landslides with machine learning algorithms. Geoscience Frontiers, 12(1), 385-393. https://doi.org/10.1016/j.gsf.2020.04.014.

[33]

Llana Fúnez S. (2018). Control litológico y estructural de los deslizamientos en el Monte Rodiles (Asturias, España) lithological and structural control of landslides in the Rodiles Hill (Asturias, Spain) [Lithological and structural control of landslides in the Rodiles Hill (Asturias, Spain)]. Trabajos de Geologia, 36, 279-296. https://doi.org/10.17811/tdg.36.2016.279-296.

[34]

Mather P., & Tso B. (2009). Classification methodes for remotely sensed data (2nd ed.). Boca Raton: CRC Press.

[35]

Mendes Von Ahn, M. M., & Severo Figuiero, A. (2021). Application of geomorphons in the construction of a geomorphological heritage index of the municipality of Bombinhas-SC-Brasil. William Morris Davis-Revista de Geomorfologia, 2(2), 1-20. https://doi.org/10.48025/ISSN2675-6900.v2n2.2021.147.

[36]

Merghadi A., Yunus A. P., Dou J., Whiteley J., ThaiPham B., Bui D. T.,... Abderrahmane B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225.

[37]

Meyer H., Reudenbach C., Hengl T., Katurji M., & Nauss T. (2018). Improving performance of spatio-temporal machine learning models using forward feature selec-tion and target-oriented validation. Environmental Modelling & Software, 101, 1-9. https://doi.org/10.1016/j.envsoft.2017.12.001.

[38]

Migoń P., & Pijet-Migoń E. (2017). Viewpoint geosites: Values, conservation and management issues. Proceedings of the GeologistsAssociation, 128(4), 511-522. https://doi.org/10.1016/j.pgeola.2017.05.007.

[39]

Morino C., Coratza P., & Soldati M. (2022). Landslides, a key landform in the global geological heritage. Frontiers in Earth Science, 10, 864760. https://doi.org/10.3389/feart.2022.864760.

[40]

Nakileza B. R., & Nedala S. (2020). Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenvironmental Disasters, 7(1), 27. https://doi.org/10.1186/s40677-020-00160-0.

[41]

Nhu V. -H., Mohammadi A., Shahabi H., Ahmad B. B., Al-Ansari N., Shirzadi A.,... Nguyen H. (2020). Landslide susceptibility mapping using machine learning algo-rithms and remote sensing data in a tropical environment. International Journal of Environmental Research and Public Health, 17(14), 4933. https://doi.org/10.3390/ijerph17144933.

[42]

Nur A. M. (2014). Sungal meander Luk Ulo Antara kondisi idea dan kenyatanan [River meander Luk Ulo between ideal condition and reality]. Jurnal Geografi-UNNES, 11(2), 217-226. https://doi.org/10.15294/jg.v11i2.8029.

[43]

Pei Y., Qiu H., Yang D., Liu Z., Ma S., Li J.,... Wufuer W. (2023). Increasing landslide activity in the Taxkorgan River basin (eastern Pamirs Plateau, China) driven by climate change. CATENA, 223, 106911. https://doi.org/10.1016/j.catena.2023.106911.

[44]

Pei Y., Qiu H., Zhu Y., Wang J., Yang D., Tang B., Wang F., & Cao M. (2023). Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides, 20(6), 1115-1133. https://doi.org/10.1007/s10346-023-02030-w.

[45]

Prasetyadi C. (2007). Evolusi tektonik Paleogen Jawa bagian timur [Paleogene tectonic evolution of eastern Java] (Doctoral dissertation). Bandung Technology Institute, Bandung, Indonesia.

[46]

Prosser C. D., Díaz-Martínez E., & Larwood J. G. (2018). The conservation of geosites:Principles and practice. In E.Reynard, & J.Brilha (Eds.), Geoheritage (pp. 193-212). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00011-3.

[47]

Purwaningsih R., Sartohadi J., & Anggri M. (2020). Trees and crops arrangement in the agroforestry system based on slope units to control landslide reactivation on volcanic foot slopes in Java, Indonesia. Land, 9(9), 327. https://doi.org/10.3390/LAND9090327.

[48]

Qiu, J. (2014). Landslide risks rise up agenda. Nature, 511(7509), 272-273. https://doi.org/10.1038/511272a.

[49]

Raharjo P. D. (2014). Penggunaan model analytic hierarchy process untuk penentuan potensi ancaman longsor secara spasial [Utilization of the analytic hierarchy pro-cess model for spatial landslide hazard potential determination]. Proceedings of the 2014 LIPI Geotechnology Research Centers research results presentation. Bandung: AIP Publishing.

[50]

Rees C., Palmer A., & Palmer J. (2020). Litho-structural controls on Quaternary landslide distribution in the Rangitikei hill country, North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 63(1), 90-109. https://doi.org/10.1080/00288306.2019.1629966.

[51]

Samodra G., Chen G., Sartohadi J., & Kasama K. (2017). Comparing data-driven landslide susceptibility models based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java. Environmental Earth Sciences, 76(4), 184. https://doi.org/10.1007/s12665-017-6475-2.

[52]

Samodra G., & Nugroho F. S. (2022). Benchmarking landslide inventory data handling strategies for landslide susceptibility modeling based on different random forest machine learning workows. Research Square. https://doi.org/10.21203/rs.3.rs-1441095/v1.

[53]

Sartohadi J., Harlin Jennie Pulungan N. A., Nurudin M., & Wahyudi W. (2018). The ecological perspective of landslides at soils with high clay content in the Middle Bogowonto Watershed, Central Java, Indonesia. Applied and Environmental Soil Science, 2018, 2648185. https://doi.org/10.1155/2018/2648185.

[54]

Setiawan N. I., Osanai Y., Nakano N., Adachi T., Hendratno A., Sasongko W., & Ansori C. (2020). Peak metamorphic conditions of garnet amphibolite from Luk Ulo Complex, Central Java, Indonesia: Implications for medium-pressure/high-temperature metamorphism in the Central Indonesian Accretionary Collision Complex. Indonesian Journal on Geoscience, 7(3), 225-239. https://doi.org/10.17014/ijog.7.3.225-239.

[55]

Setiawan N. I., Yuwono Y. S., & Sucipta E. (2011). The genesis of tertiary “Dakah Volcanics”in Karangsambung, Kebumen, Central Java. Majalah Geologi Indonesia, 26(1), 29-44.

[56]

Shekhar S., Kumar P., Chauhan G., & Thakkar M. G. (2019). Conservation and sustainable development of geoheritage, geopark, and geotourism: A case study of Ce-nozoic successions of western Kutch, India. Geoheritage, 11(4), 1475-1488. https://doi.org/10.1007/s12371-019-00362-5.

[57]

Sun D., Chen D., Zhang J., Mi C., Gu Q., & Wen H. (2023). Landslide susceptibility mapping based on interpretable machine learning from the perspective of geomor-phological differentiation. Land, 12(5), 1018. https://doi.org/10.3390/land12051018.

[58]

Suparka M. E. (1988). Studi petrologi dan pola kimia kompleks ofiolit Karangsambung utara Luh Ulo, Jawa Tengah, Evolusi geologi Jawa Tengah [Petrological study and chemical patterns of the Ophiolite Complex in northern Karangsambung, Luh Ulo, Central Java, geological evolution of Central Java] (Unpublisheddoctoral disseration). Department of Geology, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung, Indonesia.

[59]

Valente E., Casaburi A., Finizio M., Papaleo L., Sorrentino A., & Santangelo N. (2021). Defining the geotourism potential of the CILENTO, Vallo di Diano and Alburni UNESCO Global Geopark (Southern Italy). Geosciences, 11(11), 466. https://doi.org/10.3390/geosciences11110466.

[60]

Van Zuidam R. A. (1983). Guide to geomorphologic-aerial photographic interpretation and mapping. Enschede: International Institute for Geo-Information Science and Earth Observation.

[61]

Veselský M., Bandura P., Burian L., Harciníková T., & Bella P. (2015). Semi-automated recognition of planation surfaces and other flat landforms: A case study from the Aggtelek Karst, Hungary. Open Geosciences, 7(1), 799-811. https://doi.org/10.1515/geo-2015-0063.

[62]

Wakita K., Munasri & Widoyoko, B. (1991). Nature and age of sedimentary rock of the Luk Ulo Melange Complex in the Karangsambung area, Central Java, Indonesia. In E. P. Utomo, H. Santoso, & J. Sopaheluwakan (Eds.), Proceedings: Symposium on the Dynamics of Subduction and its Product (pp. 63-78). Bandung: Indonesian Institute of Sciences (LIPI).

[63]

Wang H. J., Zhang L. M., Yin K. S., Luo H. Y., & Li J. H. (2021). Landslide identification using machine learning. Geoscience Frontiers, 12(1), 351-364. https://doi.org/10.1016/j.gsf.2020.02.012.

[64]

Wang L. L., Tian M. Z., Wen X. F., Zhao L. L., Song J. L., Sun M.,... Sun M. (2014). Geoconservation and geotourism in Arxan-Chaihe Volcano Area, Inner Mongolia, China. Quaternary International, 349, 384-391. https://doi.org/10.1016/j.quaint.2014.06.024.

[65]

Winduhutomo S., Puswanto E., Widiyanto K., & Raharjo P. D. (2013). Analisis Geologi Teknik Akibat Kegagalan Lereng Pada Bangunan Embung Di Kawasan Cagar Alam Geologi Karangsambung (Studi Kasus: Instabilitas Embung dan Cara Mengatasinya) [Technical geological analysis of slope failure effects on reservoir build-ing at the Karangsambung geological conservation area (Case study: Reservoir instability and its solutions)]. Retrieved from https://docplayer.info/83124991-Analisis-geologi-teknik-kegagalan-lereng-pada-bangunan-embung-di-kawasan-cagar-alam-geologi-karangsambung.html#google_vignette.

[66]

Woo K. S., & Worboys G. (2019). Geological monitoring in protected areas. International Journal of Geoheritage and Parks, 7(4), 218-225. https://doi.org/10.1016/j.ijgeop.2019.12.004.

[67]

Zhao Z., Liu Z. Y., & Xu C. (2021). Slope unit-based landslide susceptibility mapping using certainty factor, support vector machine, random forest, CF-SVM and CF-RF models. Frontiers in Earth Science, 9, 589630. https://doi.org/10.3389/feart.2021.589630.

[68]

Züfle A. (2021). Uncertain spatial data management:An overview. In M.Werner, & Y. Y.Chiang (Handbookof big geospatial ?Eds.), ?data (pp.355-397). Cham: Springer. https://doi.org/10.1007/978-3-030-55462-0_14.

PDF

256

Accesses

0

Citation

Detail

Sections
Recommended

/