Temporal outline of geological heritage sites in the Western Caucasus

Dmitry A. Ruban , Anna V. Mikhailenko , Vladimir A. Ermolaev

International Journal of Geoheritage and Parks ›› 2024, Vol. 12 ›› Issue (2) : 295 -310.

PDF
International Journal of Geoheritage and Parks ›› 2024, Vol. 12 ›› Issue (2) :295 -310. DOI: 10.1016/j.ijgeop.2024.05.001
Research article
research-article

Temporal outline of geological heritage sites in the Western Caucasus

Author information +
History +
PDF

Abstract

Geological heritage sites (geosites) have various properties such as accessibility, geometry, and vulnerability, as well as age. It is reasonable to distinguish the geological ages related to the content of geosites (e.g., Early Ordovician or Valanginian) from the technical ages related to the physical appearance (forms) of geosites (e.g., Late Pleistocene, Prehistoric, or 21st century). This study examines 17 geosites known from the Western Caucasusa geologically-rich area of the Greater Caucasus orogen. The revision and the update of the stratigraphical information allow to establish their geological ages. The technical ages are defined as old (before the 19th century), historical (19th-20th centuries), or young (the beginning of the 21st century). The results show that the analyzed geosites shed light on the lengthy time span (from the late Proterozoic to the Quaternary), and the Cisuralian-Early Cretaceous sedimentary succession of the study area is represented with significant completeness. Technically, the geosites are chiefly old, although the historical and young features are also common. The outcomes of this study do not only systematize the knowledge of the ages of the geosites from the Western Caucasus, but also have several practical implications (for instance, the conservation of the technically young geosites is the priority, and the geological ages are important to arrange the geosites logically for educational and touristic excursions).

Keywords

geoheritage management / geological time / Greater Caucasus / regional history / stratigraphical correlation / technical age

Cite this article

Download citation ▾
Dmitry A. Ruban, Anna V. Mikhailenko, Vladimir A. Ermolaev. Temporal outline of geological heritage sites in the Western Caucasus. International Journal of Geoheritage and Parks, 2024, 12(2): 295-310 DOI:10.1016/j.ijgeop.2024.05.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelmaksoud K. M. (2020). Geosites in the Islamic age, Cairo -Egypt. Geojournal of Tourism and Geosites, 32(4), 1259-1263. https://doi.org/10.30892/GTG.32410-566.

[2]

Adamia S., Alania V., Chabukiani A., Kutelia Z., & Sadradze N. (2011). Great Caucasus (Cavcasioni): A long-lived North-Tethyan back-arc basin. Turkish Journal of Earth Sciences, 20(5), 611-628. https://doi.org/10.3906/yer-1005-12.

[3]

Alekseeva A. E., Ershov A. V., & Linev D. N. (2014). Numerical modeling of uplift and erosion at the Western Caucasus orogen in the Neogene-Quaternary. Moscow University Geology Bulletin, 69(4), 213-218. https://doi.org/10.3103/S0145875214040024.

[4]

Bedanokov M. K., Chich S. K., Chetyz D. Y., Trepet S. A., Lebedev S. A., & Kostianoy A. G. (2020). Physicogeographical characteristics of the Republic of Adygea. In M. K.Bedanokov, S. A.Lebedev, & A. G.Kostianoy (?Republic of Adygea environment (Eds.), The?pp.19-55). Cham: Springer. https://doi.org/10.1007/698_2020_637.

[5]

Bertok C., d’Atri A., Martire L., Barale L., Piana F., & Vigna B. (2015). A trip through deep time in the rock succession of the Marguareis area (Ligurian Alps, South Western Piemonte). Geoheritage, 7(1), 5-12. https://doi.org/10.1007/s12371-013-0096-2.

[6]

Bétard F., Hobléa F., & Portal C. (2017). Geoheritage as new territorial resource for local development. Annales de Geographie, 2017(717), 523-543. https://doi.org/10.3917/ag.717.0523.

[7]

Brilha J. (2016). Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage, 8(2), 119-134. https://doi.org/10.1007/s12371-014-0139-3.

[8]

Bruno B. C., & Wallace A. (2019). Interpretive panels for geoheritage sites: Guidelines for design and evaluation. Geoheritage, 11(4), 1315-1323. https://doi.org/10.1007/s12371-019-00375-0.

[9]

Bull W. B. (2018). Accurate surface exposure dating with lichens. Quaternary Research, 90(1), 1-9. https://doi.org/10.1017/qua.2018.7.

[10]

Caetano J. M. V., & Ponciano L. C. M. O. (2021). Cultural geology, cultural biology, cultural taxonomy, and the intangible geoheritage as new strategies for geoconser-vation. Geoheritage, 13, 79. https://doi.org/10.1007/s12371-021-00603-6.

[11]

Camino M. A., Halpern K., M. J., & Meroi Arcerito F. R. (2018). Sierra Bachicha: Proposal for a new site of geological interest in the Balcarce District, province of Buenos Aires. Serie Correlacion Geologica, 34(1), 5-14.

[12]

Cavalcanti J. A. D., da Silva M. S., Schobbenhaus C., & de Mota Lima H. (2021). Geo-mining heritages of the Mariana Anticline region, southeast of Quadrilátero Ferrífero-MG, Brazil: Qualitative and quantitative assessment of Chico Rei and Passagem mines. Geoheritage, 13(4), 98. https://doi.org/10.1007/s12371-021-00603-6.

[13]

Cerling T. E., & Craig H. (1994). Geomorphology and in-situ cosmogenic isotopes. Annual Review of Earth and Planetary Sciences, 22, 273-317. https://doi.org/10.1146/annurev.ea.22.050194.001421.

[14]

Chaitsky V. P., Popkov V. I., Popkov I. V., & Pinchuk T. N. (2020). Triassic of the Northern Caucasus. Geologiya, Geographiya i Globalnaya Energiya, 77, 11-21 (in Russian).

[15]

Chandel P., Anand S., & Singh D. (2022). An overview of scientific research on geoheritage in India. Geoheritage, 14(4), 131. https://doi.org/10.1007/s12371-022-00762-0.

[16]

Clary R. M., & Wandersee J. H. (2014). Lessons from US fossil parks for effective informal science education. Geoheritage, 6(4), 241-256. https://doi.org/10.1007/s12371-014-0116-x.

[17]

Dagis A. S., & Robinson V. N. (1973). North-western Caucasus. In L. D.Kiparisova, G. P.Radtchenko, & V. P.Gorskiy (Stratigrafija SSSR. Triasovaja sistema [Stratigrafija SSSR. Triassic system] (Eds.), pp.357-366). Moscow: Nedra, Moskva (in Russian).

[18]

Davydov V. I., & Leven E. J. (2003). Correlation of Upper Carboniferous (Pennsylvanian) and Lower Permian (Cisuralian) marine deposits of the Peri-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 196(1-2), 39-57. https://doi.org/10.1016/S0031-0182(03)00312-2.

[19]

De Wever P., & Rouget I. (2023). Historical overview of geoheritage in France. Geosciences, 13(3), 69. https://doi.org/10.3390/geosciences13030069.

[20]

Dold B. (2020). Sourcing of critical elements and industrial minerals from mine waste: The final evolutionary step back to sustainability of humankind? Journal of Geochemical Exploration, 219, 106638. https://doi.org/10.1016/j.gexplo.2020.106638.

[21]

Dos Reis R. P., & Henriques M. H. (2018). Geoheritage and advanced training for the oil industry: The Lusitanian Basin case study (Portugal). AAPG Bulletin, 102(8), 1413-1428. https://doi.org/10.1306/10181717238.

[22]

Drápela E. (2022). Assessing the educational potential of geosites: Introducing a method using inquiry-based learning. Resources, 11(11), 101. https://doi.org/10.3390/resources11110101.

[23]

Drushits V. V., & Mikhailova I. A. (1966). Biostratigraphy of the Lower Cretaceous of the Northern Caucasus. Moscow: Moscow State University (in Russian).

[24]

Dudek T. (2018). Influence of selected features of forests on forest landscape aesthetic value: Example of SE Poland. Journal of Environmental Engineering and Landscape Management, 26(4), 275-284. https://doi.org/10.3846/jeelm.2018.6268.

[25]

Dzyuba O. S., Goryacheva A. A., Ruban D. A., Gnezdilova V. V., & Zayats P. P. (2016). New data on Callovian (Middle Jurassic) belemnites and palynomorphs from the Northwestern Caucasus, Southwest Russia. Geologos, 22(1), 49-59. https://doi.org/10.1515/logos-2016-0004.

[26]

Fedorov Y. A., Mikhailenko A. V., & Ruban D. A. (2022). Large-scale accessibility as a new perspective for geoheritage assessment. Geosciences, 12(11), 414. https://doi. org/10.3390/geosciences12110414.

[27]

Ferreira D. R., & Valdati J. (2023). Geoparks and sustainable development: Systematic review. Geoheritage, 15(1), 6. https://doi.org/10.1007/s12371-022-00775-9.

[28]

Forte A. M., Gutterman K. R., van Soest M. C., & Gallagher K. (2022). Building a young mountain range: Insight into the growth of the Greater Caucasus Mountains from detrital zircon (U-Th)/He thermochronology and 10Be erosion rates. Tectonics, 41(5), e2021TC006900. https://doi.org/10.1007/s12371-022-00775-9.

[29]

Frassi C., Amorfini A., Bartelletti A., & Ottria G. (2022). Popularizing structural geology: Exemplary structural geosites from the Apuan Alps UNESCO Global Geopark (northern Apennines, Italy). Land, 11(8), 1282. https://doi.org/10.3390/land11081282.

[30]

Gaetani M., Garzanti E., Polino R., Kiricko Y., Korsakhov S., Cirilli S.,... Bucefalo Palliani R. (2005). Stratigraphic evidence for Cimmerian events in NW Caucasus (Russia). Bulletin de la Societe Geologique de France, 176(3), 283-299. https://doi.org/10.2113/176.3.283.

[31]

Gallicchio S., & Sabato L. (2011). The geosite of “Calanche” (Campomaggiore, PZ): A dive in the Thetys between the global cretaceous anoxic events. Rendiconti Online Societa Geologica Italiana, 17, 101-106. https://doi.org/10.3301/ROL.2011.31.

[32]

Garcia M. D. G., Nascimento M. A. L. D., Mansur K. L., & Pereira R. G. F. D. A. (2022). Geoconservation strategies framework in Brazil: Current status from the analysis of representative case studies. Environmental Science and Policy, 128, 194-207. https://doi.org/10.1016/j.envsci.2021.11.006.

[33]

Gordon J. E. (2018). Geoheritage, geotourism and the cultural landscape: Enhancing the visitor experience and promoting geoconservation. Geosciences, 8(4), 136. https://doi.org/10.3390/geosciences8040136.

[34]

Górska-Zabielska M. (2023). A new geosite as a contribution to the sustainable development of urban geotourism in a tourist peripheral region—Central Poland. Resources, 12(6), 71. https://doi.org/10.3390/resources12060071.

[35]

Goryacheva A. A., & Ruban D. A. (2018). New palynological data from the Lower Jurassic deposits of the Northwestern Caucasus. Vestnik Udmurtskogo Universiteta. Serija Biologija. Nauki o Zemle, 3, 321-324 (in Russian).

[36]

Goryacheva A. A., Zorina S. O., & Ruban D. A. (2022). New palynological data from the Upper Jurassic deposits of the Western Caucasus. Vestnik Udmurtskogo Universiteta. Serija Biologija. Nauki o Zemle, 32(4), 449-459 (in Russian), https://doi.org/10.35634/2412-9518-2022-32-4-449-459.

[37]

Goryacheva A. A., Zorina S. O., Ruban D. A., Eskin A. A., Nikashin K. I., Galiullin B. M.,... Zayats P. P. (2018). New palynological data for Toarcian (Lower Jurassic) deep-marine sandstones of the Western Caucasus, Southwestern Russia. Geologos, 24(2), 127-136. https://doi.org/10.2478/logos-2018-0012.

[38]

Goy A., Ureta S., & Carcavilla L. (2021). Establishing the Lower-Middle Jurassic boundary in the UNESCO Global Geopark Molina & Alto Tajo (Central Spain). Geoconservation Research, 4(2), 357-367. https://doi.org/10.30486/GCR.2021.1915353.1065.

[39]

Gradstein F. M., Ogg J. G., Schmitz M. D., & Ogg G. M. (Eds.). (2020). Geologic time scale 2020 (p. 1390). Amsterdam: Elsevier. https://doi.org/10.1016/C2020-1-02369-3.

[40]

Gulertekin Genc S., & Temizkan S. P. (2023). Destination aesthetics: An empirical study of aesthetic judgment and aesthetic distance among tourists in Turkey. European Journal of Tourism Research, 33, 3308. https://doi.org/10.54055/ejtr.v33i.2221.

[41]

Guo L., Vincent S. J., & Lavrishchev V. (2011). Upper Jurassic reefs from the Russian Western Caucasus: Implications for the eastern Black Sea. Turkish Journal of Earth Sciences, 20(5), 629-653. https://doi.org/10.3906/yer-1012-5.

[42]

Gutiérrez-Marco J. C., & Štorch P. (2021). The Checa Silurian section, an outstanding fossil site in the Molina-Alto Tajo UNESCO Global Geopark, Spain. Geoconservation Research, 4(1), 136-143. https://doi.org/10.30486/gcr.2021.1912072.1037.

[43]

Habibi T., Ponedelnik A. A., Yashalova N. N., & Ruban D. A. (2018). Urban geoheritage complexity: Evidence of a unique natural resource from Shiraz city in Iran. Resources Policy, 59, 85-94. https://doi.org/10.1016/j.resourpol.2018.06.002.

[44]

Hansen E. S. (2008). The application of lichenometry in dating of glacier deposits. Geografisk Tidsskrift, 108(1), 143-151. https://doi.org/10.1080/00167223.2008.10649580.

[45]

Henriques M. H. (2023). Broadening frontiers in geoconservation: The concept of intangible geoheritage represented by the 1755 Lisbon Earthquake. Geoheritage, 15(2), 57. https://doi.org/10.1007/s12371-023-00831-y.

[46]

Henriques M. H., & Neto K. (2023). A geo-itinerary to foster sustainable tourism in West African islands: Storytelling the evolution of the ancient Cameroon Volcanic Line coral reefs. Sustainability, 15(4), 16863. https://doi.org/10.3390/su152416863.

[47]

Henriques M. H., Pena dos Reis R., Garcia G. G., João P., Marques R. M., & Custódio S. (2022). Developing paleogeographic heritage concepts and ideas through the Upper Jurassic record of the Salgado and Consolação geosites (Lusitanian Basin, Portugal). Resources Policy, 76, 102594. https://doi.org/10.1016/j.resourpol.2022.102594.

[48]

Herrera-Franco G., Carrión-Mero P., Montalván-Burbano N., Caicedo-Potosí J., & Berrezueta E. (2022). Geoheritage and geosites: A bibliometric analysis and literature review. Geosciences, 12(4), 169. https://doi.org/10.3390/geosciences12040169.

[49]

Herrera-Franco G., Mata-Perelló J., Caicedo-Potosí J., & Carrión-Mero P. (2023). Vulnerability in geosites:A systematic literature review. In W. LealFilho, F.Frankenberger, & U.Tortato (Eds.), Sustainability?? in practice (pp.395-407). Cham: Springer, Cham. https://doi.org/10.1007/978-3-031-34436-7_23.

[50]

Herrera-Franco G., Montalván-Burbano N., Carrión-Mero P., Apolo-Masache B., & Jaya-Montalvo M. (2020). Research trends in geotourism: A bibliometric analysis using the Scopus database. Geosciences, 10(10), 379. https://doi.org/10.3390/geosciences10100379.

[51]

Hincapie M., Cifuentes L. M., Valencia-Arias A., & Quiroz-Fabra J. (2023). Geoheritage and immersive technologies: Bibliometric analysis and literature review. Episodes, 46(1), 101-115. https://doi.org/10.18814/epiiugs/2022/022016.

[52]

Hussain A. I. (2022). Geodiversity of Smaquli area as a potential geopark in Kurdistan region, Iraq. International Journal of Geoheritage and Parks, 10(4), 477-490. https://doi.org/10.1016/j.ijgeop.2022.07.005.

[53]

Ibáñez J. -J., & Brevik E. C. (2019). Divergence in natural diversity studies: The need to standardize methods and goals. Catena, 182, 104110. https://doi.org/10.1016/j.catena.2019.104110.

[54]

Ibáñez J. -J., Brevik E. C., & Cerdà A. (2019). Geodiversity and geoheritage: Detecting scientific and geographic biases and gaps through a bibliometric study. Science of the Total Environment, 659, 1032-1044. https://doi.org/10.1016/j.scitotenv.2018.12.443.

[55]

Ivy-Ochs S., & Kober F. (2008). Surface exposure dating with cosmogenic nuclides. E&G Quaternary Science Journal, 57(1-2), 179-209. https://doi.org/10.3285/eg.57.1-2.7.

[56]

Karpunin A. M., Mamonov S. V., Mironenko O. A., & Sokolov A. R. (1998). Geological monuments of nature of Russia. Sankt-Peterburg: Lorien (in Russian).

[57]

Kazancı N. (2012). Geological background and three vulnerable geosites of the Kızılcahamam-Çamlıdere Geopark project in Ankara, Turkey. Geoheritage, 4(4), 249-261. https://doi.org/10.1007/s12371-012-0064-2.

[58]

Kelly M. A., Kubik P. W., Von Blanckenburg F., & Schlüchter C. (2004). Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, Western Swiss Alps, using the cosmogenic nuclide 10Be. Journal of Quaternary Science, 19(5), 431-441. https://doi.org/10.1002/jqs.854.

[59]

Kim H. J., Paik I. S., Park J. G., Jeong E. K., Kim K., Baek S. G.,... Lee H. (2022). Cretaceous Icheonri Formation at Sinpyeongri Coast, Gijang County, Busan, Korea: Oc-currences and values in geological heritage. Journal of the Geological Society of Korea, 58(1), 1-22. https://doi.org/10.1002/jqs.854.

[60]

Kirillova K. (2023). A review of aesthetic research in tourism: Launching the annual of tourism research curated collection on beauty and aesthetics in tourism. Annals of Tourism Research, 100, 103553. https://doi.org/10.1016/j.annals.2023.103553.

[61]

Kirillova K., Fu X., Lehto X., & Cai L. (2014). What makes a destination beautiful? Dimensions of touristic aesthetic judgment. Tourism Management, 42, 282-293. https://doi.org/10.1016/j.tourman.2013.12.006.

[62]

Kotlyar G. V., Nestell G. P., Zakharov Y. D., & Nestell M. K. (1999). Changhsingian of the Northwestern Caucasus, Southern Primorye and Southeastern Pamirs. Permophiles, 35, 18-22.

[63]

Kotlyar G. V., Zakharov Y. D., & Polubotko I. V. (2004). Late Changhsingian fauna of the Northwestern Caucasus Mountains, Russia. Journal of Paleontology, 78(3), 513-527. https://doi.org/10.1666/0022-3360(2004)078<0513:LCFOTN>2.0.CO;2.

[64]

Kubalíková L., & Balková M. (2023). Two-level assessment of threats to geodiversity and geoheritage: A case study from Hády quarries (Brno, Czech Republic). Environmental Impact Assessment Review, 99, 107024. https://doi.org/10.1016/j.eiar.2022.107024.

[65]

Kubalíková L., & Zapletalová D. (2021). Geo-cultural aspects of building stone extracted within Brno City (Czech Republic): A bridge between natural and cultural heritage. Geoheritage, 13(3), 78. https://doi.org/10.1007/s12371-021-00585-5.

[66]

Kushcheva Y. V., Latysheva I. V., Golovin D. I., & Gavrilov Y. O. (2007). Textural-structural, mineralogical, isotopic, and age characteristics of Jurassic terrigenous rocks of the Northwestern Caucasus (the Belaya River section). Lithology and Mineral Resources, 42(3), 257-267. https://doi.org/10.1134/S0024490207030054.

[67]

Lagally U., & Loth G. (2017). Experiencing Bavarias geological heritage: The project “Hundred Masterpieces”. Geoheritage, 9(4), 519-531. https://doi.org/10.1007/s12371-016-0209-9.

[68]

Lahmidi S., Lagnaoui A., Berrada I., El Adnani A., Saadi M., & Bahaj T. (2021). The Ordovician Foum Larjamme tunnel paleo-valleys from Bani Geopark project: As-sessment of geological heritage for geo-education and geotourism purposes. Geoheritage, 13(4), 104. https://doi.org/10.1007/s12371-021-00630-3.

[69]

Lahmidi S., Lagnaoui A., El Adnani A. E., Berrada I., Saadi M., & Bahaj T. (2022). Integrating geological and archaeological heritage for conservation and promotion of Foum Larjamme geosite from Bani Geopark project South-eastern Morocco. Geoheritage, 14(3), 81. https://doi.org/10.1007/s12371-022-00718-4.

[70]

Latysheva I. V., & Kirmasov A. B. (2018). Estimation of the deformation value in terrigenous rocks by the random cross-section method (Belaya River, northern slope of the Greater Caucasus). Moscow University Geology Bulletin, 73(3), 229-237. https://doi.org/10.3103/S0145875218030067.

[71]

Martínez-Graña A., González-Delgado J.Á., Ramos C., & Gonzalo J. C. (2018). Augmented reality and valorizing the Mesozoic geological heritage (Burgos, Spain). Sustainability, 10, 4616. https://doi.org/10.3390/su10124616.

[72]

Masarik J., & Wieler R. (2003). Production rates of cosmogenic nuclides in boulders. Earth and Planetary Science Letters, 216(1-2), 201-208. https://doi.org/10.1016/S0012-821X(03)00476-X.

[73]

McCann T., Chalot-Prat F., & Saintot A. (2010). The Early Mesozoic evolution of the Western Greater Caucasus (Russia): Triassic-Jurassic sedimentary and magmatic history. Geological Society Special Publication, 340, 181-238. https://doi.org/10.1144/SP340.10.

[74]

Mikerina T. B., & Pinchuk T. N. (2020). Facies of Cretaceous deposits of the northern part of the Western Ciscaucasus. In E. Y.Baraboshkin, & A. Y.Guzhikov (Melovaya sistema Rossii i blizhnego zarubezhya: Problemy stratigrafii i paleogeografii [Cretaceous system of Russia and neighboring countries: Problems of stratig-raphy and paleogeography] (pp.Eds.),171-174). Magadan: Magadan Regional Press (in Russian).

[75]

Mikhailenko A. V., & Ruban D. A. (2023). Typology of geoconservation objects in mountainous Adygeya. Vestnik Udmurtskogo Universiteta. Serija Biologija. Nauki o Zemle, 33(2), 245-253. https://doi.org/10.35634/2412-9518-2023-33-2-245-253 (in Russian).

[76]

Miklukho-Maklay A. D., & Miklukho-Maklay K. V. (1966). The Crimean-Caucasian fold belt. In B. P.Likharev (Ed.), Stratigrafija SSSR. Permskaja sistema [Assistant: Stra-tigraphy of the USSR. Permian system] (pp.391-402). Moscow: Nedra (in Russian).

[77]

Moreira J. C. (2012). Interpretative panels about the geological heritage: A case study at the Iguassu Falls National Park (Brazil). Geoheritage, 4(1-2), 127-137. https://doi.org/10.1007/s12371-012-0053-5.

[78]

Mosar J., Mauvilly J., Koiava K., Gamkrelidze I., Enna N., Lavrishev V., & Kalberguenova V. (2022). Tectonics in the Greater Caucasus (Georgia-Russia): From an intracontinental rifted basin to a doubly verging fold-and-thrust belt. Marine and Petroleum Geology, 140, 105630. https://doi.org/10.1016/j.marpetgeo.2022.105630.

[79]

Moskvin M. M (Ed.). (1986). Stratigraphy of the USSR. Cretaceous system (Vol. 1, p. 340). Moscow: Nedra (in Russian).

[80]

Mucivuna V. C., Motta Garcia M. D. G., & Reynard E. (2022). Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology, 396, 107988. https://doi.org/10.1016/j.geomorph.2021.107988.

[81]

Nazarenko O. V., Mikhailenko A. V., Smagina T. A., & Kutilin V. S. (2020). Natural conditions of Mountainous Adygeya (p. 132). Rostov-on-Don: Southern Federal Uni-versity (in Russian).

[82]

Németh B., Németh K., Procter J. N., & Farrelly T. (2021). Geoheritage gonservation: Systematic mapping study for conceptual synthesis. Geoheritage, 13(2), 45. https://doi.org/10.1007/s12371-021-00561-z.

[83]

Neto K., & Henriques M. H. (2022). Geoconservation in Africa: State of the art and future challenges. Gondwana Research, 110, 107-113. https://doi.org/10.1016/j.gr.2022.05.022.

[84]

Okay A. I., & Nikishin A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5-8), 1051-1076. https://doi.org/10.1080/00206814.2015.1010609.

[85]

Oppizzi P., Pasquaré Mariotto F., Stockar R., Stella A., Corti N., Pedicini M.,... Bonali F. L. (2023). Geosites in the Gole della Breggia Geopark, Ticino, Southern Switzerland. Resources, 12, 122. https://doi.org/10.3390/resources12100122.

[86]

Osborn G., McCarthy D., LaBrie A., & Burke R. (2015). Lichenometric dating: Science or pseudo-science? Quaternary Research, 83(1), 1-12. https://doi.org/10.1016/j.yqres.2014.09.006.

[87]

Page K. N. (2004). The protection of Jurassic sites and fossils: Challenges for global Jurassic science (including a proposed statement on the conservation of palaeon-tological heritage and stratotypes). Rivista Italiana di Paleontologia e Stratigrafia, 110(1), 373-379.

[88]

Pérez-Romero M. E., Álvarez-García J., Flores-Romero M. B., & Jiménez-Islas D. (2023). UNESCO Global Geoparks 22 years after their creation: Analysis of scientific production. Land, 12(3), 671. https://doi.org/10.3390/land12030671.

[89]

Pescatore E., Bentivenga M., & Giano S. I. (2023). Geoheritage and geoconservation: Some remarks and considerations. Sustainability, 15(7), 5823. https://doi.org/10.3390/su15075823.

[90]

Pescatore E., Bentivenga M., Giano S. I., & Siervo V. (2019). Geomorphosites: Versatile tools in geoheritage cultural dissemination. Geoheritage, 11(4), 1583-1601. https://doi.org/10.1007/s12371-019-00378-x.

[91]

Pijet-Migoń E., & Migoń P. (2022). Geoheritage and cultural heritage: A review of recurrent and interlinked themes. Geosciences, 12, 98. https://doi.org/10.3390/geosciences12020098.

[92]

Plyusnina E. E., Ruban D. A., & Zayats P. P. (2015). Thematic dimension of geological heritage: An evidence from the Western Caucasus. Journal of the Geographical InstituteJovan CvijicSASA, 65(1), 59-76. https://doi.org/10.2298/IJGI1501059P.

[93]

Popov Y. V., Pustovit O. E., & Tereshchenko V. A. (2020). Accessory chrome spinels of serpentinites of tectonic melange of the Dakhov uplift (Greater Caucasus). Geologiya i Geofizika Yuga Rossii, 10(2), 38-55. https://doi.org/10.46698/VNC.2020.21.55.003.

[94]

Popov Y. V., & Sharova T. V. (2022). Formations and structural-formation zonation of the geological complexes of the territory of the mountainous part of Adygeya (Greater Caucasus) (p. 44). Rostov-on-Don: SFU (in Russian).

[95]

Pronina-Nestell G. P., & Nestell M. K. (2001). Late Changhsingian foraminifers of the Northwestern Caucasus. Micropaleontology, 47(3), 205-234. https://doi.org/10.2113/47.3.205.

[96]

Prosser C., Murphy M., & Larwood J. (2006). Geological conservation: A guide to good practice. Peterborough: English Nature.

[97]

Prosser C. D. (2019). Communities, quarries and geoheritage: Making the connections. Geoheritage, 11(4), 1277-1289. https://doi.org/10.1007/s12371-019-00355-4.

[98]

Pugacvev V. I., & Ruban D. A. (2005). Stratigraphical and paleontological types of geological sites. Rostov-on-Don: Rostov State University, 20 (in Russian).

[99]

Putkonen J., & Swanson T. (2003). Accuracy of cosmogenic ages for moraines. Quaternary Research, 59(2), 255-261. https://doi.org/10.1016/S0033-5894(03)00006-1.

[100]

Rassios A. E., & Grieco G. (2021). Is geoheritage a "cutting-edge" science? Promotion of an extension to the definition of geoheritage with emphasis as a significant discipline in geosciences with cultural and societal relevance. Special Paper of the Geological Society of America, 552, 37-53. https://doi.org/10.1130/2021.2552(03).

[101]

Rocha J., Brilha J., & Henriques M. H. (2014). Assessment of the geological heritage of Cape Mondego Natural Monument (Central Portugal). Proceedings of the GeologistsAssociation, 125(2), 107-113. https://doi.org/10.1016/j.pgeola.2013.04.005.

[102]

Rostovtsev K. O., Agajev V. B., Azarjan N. R., Babajev R. G., Beznosov N. V., Gasanov N. A.,... Schevtchenko T. V. (1992). The Jurassic of the Caucasus (p. 192). Sankt-Peterburg: Nauka (in Russian).

[103]

Rostovtsev K. O., Savel’eva L. M., Jefimova N. A., & Shvemberger J. N. (1979). A decision of the 2nd Interdepartmental Regional Stratigraphical Meeting on the Mesozoic of the Caucasus (Triassic) (p. 36). Leningrad: All-Soviet Research Geological Institute (in Russian).

[104]

Różycka M., & Migoń P. (2018). Customer-oriented evaluation of geoheritage: On the example of volcanic geosites in the West Sudetes, SW Poland. Geoheritage, 10(1), 23-37. https://doi.org/10.1007/s12371-017-0217-4.

[105]

Ruban D. A. (2009). Stratigraphy of the Paleozoic magmatic rocks from the northern part of Mountainous Adygeya (Western Caucasus). Problemy Mineralogii, Petrografii I Metallogenii, 12, 156-162 (in Russian).

[106]

Ruban D. A. (2022). Islands in the Caucasian Sea in three Mesozoic time slices: Novel dimension of geoheritage and geotourism. Journal of Marine Science and Engineering, 10(9), 1300. https://doi.org/10.3390/jmse10091300.

[107]

Ruban D. A. (2023a). Ancient carbonate reefs as geological heritage: State of knowledge and case example. Carbonates and Evaporites, 38(4), 75. https://doi.org/10.1007/s13146-023-00903-8.

[108]

Ruban D. A., Mikhailenko A. V., & Yashalova N. N. (2022a). Valuable geoheritage resources: Potential versus exploitation. Resources Policy, 77, 102665. https://doi.org/10.1016/j.resourpol.2022.102665.

[109]

Ruban D. A. (2023b). Tsunamis struck coasts of Triassic oceans and seas: Brief summary of the literary evidence. Water, 15(8), 1590. https://doi.org/10.3390/w15081590.

[110]

Ruban D. A., Mikhailenko A. V., & Ermolaev V. A. (2022b). Inverted landforms of the Western Caucasus: Implications for geoheritage, geotourism, and geobranding. Heritage, 5(3), 2315-2331. https://doi.org/10.3390/heritage5030121.

[111]

Ruban D. A., Zorina S. O., Nikashin K. I., & Tahhan F. (2022c). New data on late Paleozoic granitoids of the Rufabgo Crystalline Massif of Mountainous Adygeya. Utchenye Zapiski Krymskogo Federalnogo Universiteta. Geografija. Geologija., 4, 219-234 (in Russian).

[112]

Ruban D. A., & Pugachev V. I. (2005). Synthem stratigraphy of the Jurassic from the Belaya River basin (North-Western Caucasus). Nauchnaya myslKavkaza. Prilozhenie, 2, 288-290 (in Russian).

[113]

Ruban D. A., Zerfass H., & Pugatchev V. I. (2009). Triassic synthems of southern South America (Southwestern Gondwana) and the Western Caucasus (the Northern Neotethys), and global tracing of their boundaries. Journal of South American Earth Sciences, 28(2), 155-167. https://doi.org/10.1016/j.jsames.2009.03.003.

[114]

A. A., Pereira S., Rábano I., & Gutiérrez-Marco J. C. (2021). Giant trilobites and other Middle Ordovician invertebrate fossils from the Arouca UNESCO Global Ge-opark, Portugal. Geoconservation Research, 4(1), 121-130. https://doi.org/10.30486/gcr.2021.1913689.1057.

[115]

Santangelo N., & Valente E. (2020). Geoheritage and geotourism resources. Resources, 9(7), 80. https://doi.org/10.3390/RESOURCES9070080.

[116]

Santos-González J., & Marcos-Reguero A. (2019). Applying the geological heritage in land management: Cartography and management proposals of geosites in Burgos Province (Spain). Geoheritage, 11(2), 485-500. https://doi.org/10.3390/RESOURCES9070080.

[117]

Saurabh M., Sudhanshu S., Singh S. K., & Mathur S. C. (2021). Qualitative assessment of geoheritage for geotourism promotion: A case study from Mehrangarh Ridge in Jodhpur City, Western Rajasthan, India. Geoheritage, 13(3), 80. https://doi.org/10.1007/s12371-021-00604-5.

[118]

Selmi L., Coratza P., Gauci R., & Soldati M. (2019). Geoheritage as a tool for environmental management: A case study in northern Malta (Central Mediterranean Sea). Resources, 8(4), 168. https://doi.org/10.3390/resources8040168.

[119]

Semeniuk V., & Brocx M. (2019). The Archaean to Proterozoic igneous rocks of the Pilbara region, Western Australia: Internationally significant geology of a globally unique potential geopark. International Journal of Geoheritage and Parks, 7(2), 56-71. https://doi.org/10.1016/j.ijgeop.2019.06.001.

[120]

Somin M. L., Levchenkov O. A., Kotov A. B., Makeev A. F., Komarov A. N., Ro N. I.,... Lebedev V. A. (2007). The Paleozoic age of high-pressure metamorphic rocks in the Dakhov Salient, Northwestern Caucasus: Results of U-Pb geochronological investigations. Doklady Earth Sciences, 416(1), 1018-1021. https://doi.org/10.1134/S1028334X07070082.

[121]

Somma R. (2022). The inventory and quantitative assessment of geodiversity as strategic tools for promoting sustainable geoconservation and geo-education in the Peloritani Mountains (Italy). Education in Science, 12(9), 580. https://doi.org/10.3390/educsci12090580.

[122]

Štrba L., Rybár P., Baláž B., Molokáč M., Hvizdák L., Kršák B.,... Ferenčíková J. (2015). Geosite assessments: Comparison of methods and results. Current Issues in Tourism, 18(5), 496-510. https://doi.org/10.1080/13683500.2014.882885.

[123]

Théry J. M., Vachard D., & Dransart E. (2007). Late Permian limestones and the Permian-Triassic boundary: New biostratigraphic, palaeobiogeographical and geo-chemical data in Caucasus and Eastern Europe. Geological Society of London, Special Publication, 275, 255-274. https://doi.org/10.1144/GSL.SP.2007.275.01.16.

[124]

Torres A., Simoni M. U., Keiding J. K., Muller D. B., Zu Ermgassen, S. O. S. E., Liu J.,... Lambin E. F. (2021). Sustainability of the global sand system in the Anthropocene. One Earth, 4(5), 639-650. https://doi.org/10.1016/j.oneear.2021.04.011.

[125]

Trifonov V. G., Sokolov S. Y., Sokolov S. A., & Hessami K. (2020). Mesozoic-Cenozoic structure of the Black Sea-Caucasus-Caspian region and its relationships with the Upper Mantle Structure. Geotectonics, 54(3), 331-355. https://doi.org/10.1016/j.oneear.2021.04.011.

[126]

Trikhunkov Y. I., Zelenin E. A., Shalaeva E. A., Marinin A. V., Novenko E. Y., Frolov P. D.,... Kolesnichenko A. A. (2019). Quaternary river terraces as indicators of the Northwestern Caucasus active tectonics. Quaternary International, 509, 62-72. https://doi.org/10.1016/j.quaint.2018.09.001.

[127]

Van Hinsbergen D. J. J., Torsvik T. H., Schmid S. M., Matenco L. C., Maffione M., Vissers R. L. M., Gürer D., & Spakman W. (2020). Orogenic architecture of the Med-iterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79-229. https://doi.org/10.1016/j.gr.2019.07.009.

[128]

Vegas J., & Díez-Herrero A. (2021). An assessment method for urban geoheritage as a model for environmental awareness and geotourism (Segovia, Spain). Geoheritage, 13(2), 27. https://doi.org/10.1007/s12371-021-00548-w.

[129]

Vorob’yev I. E. (2014). Search for fossil in the North-western Caucasus: Krasnodar region and Republic of Agygeya (p. 300). Moscow: Krasnodarskoe Otdelenie, RosGeo (in Russian).

[130]

Vuks V. J. (2007). Olenekian (Early Triassic) foraminifers of the Gorny Mangyshlak, Eastern Precaucasus and Western Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2), 82-92. https://doi.org/10.1016/j.palaeo.2006.11.035.

[131]

Vuks V. J. (2013). Lower and middle Jurassic stratigraphic scheme of the Western Caucasus:Problems of correlation and division. In R.Rocha, J.Pais, J. C.Kullberg, & S.Finney (Eds.), STRATI 2013 (pp.609-618). Cham: Springer. https://doi.org/10.1007/978-3-319-04364-7_117.

[132]

Wang J., & Zouros N. (2021). Educational activities in Fangshan UNESCO Global Geopark and Lesvos Island UNESCO Global Geopark. Geoheritage, 13(3), 51. https://doi. org/10.1007/s12371-021-00570-y.

[133]

Williams M. A., McHenry M. T., & Boothroyd A. (2020). Geoconservation and geotourism: Challenges and unifying themes. Geoheritage, 12(3), 63. https://doi.org/10.1007/s12371-020-00492-1.

[134]

Wimbledon W. A. P., & Smith-Meyer S. (2012). Geoheritage in Europe and its conservation (p. 415). Oslo: ProGEO.

[135]

Winchester V. (2023). Lichenometric dating and its limitations and problems: A guide for practitioners. Land, 12(3), 611. https://doi.org/10.3390/land12030611.

[136]

Wolniewicz P. (2021). Beyond geodiversity sites: Exploring the educational potential of widespread geological features (rocks, minerals and fossils). Geoheritage, 13(2), 34. https://doi.org/10.1007/s12371-021-00557-9.

[137]

Wolniewicz P. (2022). Classification and quantification of urban geodiversity and its intersection with cultural heritage. Geoheritage, 14(2), 63. https://doi.org/10.1007/s12371-022-00693-w.

[138]

Yaroshenko O. P. (1978). Miospore assemblages and Triassic stratigraphy of the West Caucasus (p. 128). Moscow: Nauka (in Russian).

[139]

Yu S. -Y., & Zhu C. (2022). Inverse modeling of lichen growth curves and implications for lichenometric dating. Quaternary Geochronology, 69, 101257. https://doi.org/10.1016/j.quageo.2022.101257.

[140]

Zafeiropoulos G., & Drinia H. (2023). GEOAM: A holistic assessment tool for unveiling the geoeducational potential of geosites. Geosciences, 13(7), 210. https://doi.org/10.3390/geosciences13070210.

[141]

Zakharov Y. D., Ukhaneva N. G., Ignatyev A. V., Afanasyeva T. B., Buryi G. I., Kotlyar G. V.,... Vuks V. Y. (1999). Dorashamian, Indian, Olenekian, Anisian, Ladinian, Carnian, Norian and Rhaetian carbonates of Russia: Stable isotopes, Ca-Mg ratio, and correlation. Albertiana, 22, 27-30.

[142]

Zorlu K., & Dede V. (2023). Evaluation of nature-based tourism potential in protected and sensitive areas by CRITIC and PROMETHEE-GAIA methods. International Journal of Geoheritage and Parks, 11(3), 349-364. https://doi.org/10.1016/j.ijgeop.2023.05.004.

[143]

Zorlu K., Dede V., Zorlu B.Ş., & Serin S. (2023). Quantitative assessment of geoheritage with the GAM and MEREC-based PROMETHEE-GAIA method. Resources Policy, 84, 103796. https://doi.org/10.1016/j.resourpol.2023.103796.

PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

/