3D-bioprinted placenta-on-a-chip platform for modeling the human maternal-fetal barrier

Yazhi Sun , Henry H. Hwang , Chandana Tekkatte , Scott A. Lindsay , Anelizze Castro-Martinez , Claire Yu , Isabella Saldana , Xuanyi Ma , Omar Farah , Mana M. Parast , Louise C. Laurent , Shaochen Chen

International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (5) : 178 -196.

PDF (5822KB)
International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (5) :178 -196. DOI: 10.36922/IJB025270262
RESEARCH ARTICLE
research-article

3D-bioprinted placenta-on-a-chip platform for modeling the human maternal-fetal barrier

Author information +
History +
PDF (5822KB)

Abstract

The placenta plays a vital role in pregnancy by regulating selective exchange between the maternal and fetal circulations and producing essential hormonal signals. In this study, we present an in vitro placenta-on-a-chip platform that leverages 3D bioprinting to replicate the structural and functional features of the human placental barrier. This microengineered system utilizes digital light processing-based 3D bioprinting to fabricate the microfluidic mold and construct 3D encapsulated cell cultures within a biomimetic hydrogel scaffold, enabling co-culture of three human cell types, including two derived from primary placental tissue. The system demonstrated excellent cell viability, high metabolic activity, placental hormone secretion, and native-like selective barrier transport properties. This system offers a versatile platform for experimental perturbations to explore mechanisms of normal placental function and identify contributors to placental dysfunction.

Keywords

Bioprinting / Microfluidics / Microphysiological system / Organ-on-a-chip / Placenta / Trophoblast stem cells

Cite this article

Download citation ▾
Yazhi Sun, Henry H. Hwang, Chandana Tekkatte, Scott A. Lindsay, Anelizze Castro-Martinez, Claire Yu, Isabella Saldana, Xuanyi Ma, Omar Farah, Mana M. Parast, Louise C. Laurent, Shaochen Chen. 3D-bioprinted placenta-on-a-chip platform for modeling the human maternal-fetal barrier. International Journal of Bioprinting, 2025, 11(5): 178-196 DOI:10.36922/IJB025270262

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was supported in part by grants from the National Institutes of Health (NIH) to S.C., L.L., and M.P. (R21HD100132) and the National Science Foundation (NSF) to S.C. (2135720). The UCSD School of Medicine Microscopy Core facility was supported by the NIH grant P30 NS047101.

Conflict of Interest

The authors declare no competing interests.

References

[1]

Mitchell AA, Gilboa SM, Werler MM, Kelley KE, Louik C, Hernández-Díaz S. Medication use during pregnancy, with particular focus on prescription drugs: 1976–2008. Am J Obstetr Gynecol. 2011;205(1):51.e1-51.e8. doi: 10.1016/j.ajog.2011.02.029

[2]

Wesley BD, Sewell CA, Chang CY, Hatfield KP, Nguyen CP. Prescription medications for use in pregnancy–perspective from the US Food and Drug Administration. Am J Obstetr Gynecol. 2021;225(1):21-32. doi: 10.1016/j.ajog.2021.02.032

[3]

Zubizarreta ME, Xiao S. Bioengineering models of female reproduction. Bio Des Manuf. 2020;3(3):237. doi: 10.1007/s42242-020-00082-8

[4]

Zabel RR, Favaro RR, Groten T, Brownbill P, Jones S. Ex vivo perfusion of the human placenta to investigate pregnancy pathologies. Placenta. 2022;130:1-8. doi: 10.1016/j.placenta.2022.10.006

[5]

Glättli SC, Elzinga FA, van der Bijl W, et al. Variability in perfusion conditions and set-up parameters used in ex vivo human placenta models: a literature review. Placenta. 2024;157:37-49. doi: 10.1016/j.placenta.2024.03.007

[6]

Carter AM. Animal models of human placentation – a review. Placenta. 2007;28:S41-S47. doi: 10.1016/j.placenta.2006.11.002

[7]

Carter AM. Evolution of placental hormones: implications for animal models. Front Endocrinol. 2022;13:891927. doi: 10.3389/fendo.2022.891927

[8]

Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational nanomedicines across human reproductive organs modeling on microfluidic chips: state-of-the-art and future prospects. ACS Biomater Sci Eng. 2023;9(1):62-84. doi: 10.1021/acsbiomaterials.2c01080

[9]

Pu Y, Gingrich J, Veiga-Lopez A. A 3-dimensional microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening. Lab Chip. 2021;21(3):546-557. doi: 10.1039/D0LC01013H

[10]

Heaton SJ, Eady JJ, Parker ML, et al. The use of BeWo cells as an in vitro model for placental iron transport. Am J Physiol Cell Physiol. 2008;295(5):C1445-C1453. doi: 10.1152/ajpcell.00286.2008

[11]

Park JY, Mani S, Clair G, et al. A microphysiological model of human trophoblast invasion during implantation. Nat Commun. 2022;13(1):1252. doi: 10.1038/s41467-022-28663-4

[12]

Hori T, Okae H, Shibata S, et al. Trophoblast stem cell-based organoid models of the human placental barrier. Nat Commun. 2024;15(1):962. doi: 10.1038/s41467-024-45279-y

[13]

Kallol S, Moser-Haessig R, Ontsouka CE, Albrecht C. Comparative expression patterns of selected membrane transporters in differentiated BeWo and human primary trophoblast cells. Placenta. 2018;72-73:48-52. doi: 10.1016/j.placenta.2018.10.008

[14]

Cao R, Wang Y, Liu J, Rong L, Qin J. Self-assembled human placental model from trophoblast stem cells in a dynamic organ-on-a-chip system. Cell Prolif. 2023;56(5):e13469. doi: 10.1111/cpr.13469

[15]

Cao R, Guo Y, Liu J, et al. Assessment of nanotoxicity in a human placenta-on-a-chip from trophoblast stem cells. Ecotoxicol Environ Saf. 2024;285:117051. doi: 10.1016/j.ecoenv.2024.117051

[16]

Lermant A, Rabussier G, Davidson L, Lanz HL, Murdoch CE. Protocol for a placenta-on-a-chip model using trophoblasts differentiated from human induced pluripotent stem cells. STAR Protoc. 2024;5(1):102879. doi: 10.1016/j.xpro.2024.102879

[17]

Wang Y, Guo Y, Wang P, et al. An engineered human placental organoid microphysiological system in a vascular niche to model viral infection. Commun Biol. 2025;8(1):669. doi: 10.1038/s42003-025-08057-0

[18]

Pemathilaka RL, Caplin JD, Aykar SS, et al. Placenta-on-a- Chip: In Vitro Study of Caffeine Transport across Placental Barrier Using Liquid Chromatography Mass Spectrometry. Global Challenges. 2019;3(3):1800112. doi: 10.1002/gch2.201800112

[19]

Ma Z, Sagrillo-Fagundes L, Mok S, Vaillancourt C, Moraes C. Mechanobiological regulation of placental trophoblast fusion and function through extracellular matrix rigidity. Sci Rep. 2020;10(1):5837. doi: 10.1038/s41598-020-62659-8

[20]

Lee JS, Romero R, Han YM, et al. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med. 2016;29(7):1046-1054. doi: 10.3109/14767058.2015.1038518

[21]

Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials. 2018;185:310-321. doi: 10.1016/j.biomaterials.2018.09.026

[22]

Pyo SH, Wang P, Hwang HH, Zhu W, Warner J, Chen S. Continuous optical 3D printing of green aliphatic polyurethanes. ACS Appl Mater Interfaces. 2017;9(1):836-844. doi: 10.1021/acsami.6b12500

[23]

Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takahashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004;6(6):543-553. doi: 10.1080/14653240410005366-1

[24]

Okae H, Toh H, Sato T, et al. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018;22(1):50-63.e6. doi: 10.1016/j.stem.2017.11.004

[25]

Bai T, Peng CY, Aneas I, et al. Establishment of human induced trophoblast stem-like cells from term villous cytotrophoblasts. Stem Cell Res. 2021;56:102507. doi: 10.1016/j.scr.2021.102507

[26]

Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106-115. doi: 10.1016/j.biomaterials.2017.01.042

[27]

Teasdale F. Gestational changes in the functional structure of the human placenta in relation to fetal growth: a morphometric study. Am J Obstetr Gynecol. 1980;137(5):560-568. doi: 10.1016/0002-9378(80)90696-1

[28]

Blundell C, Yi YS, Ma L, et al. Placental drug transport-on-a-chip: a microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier. Adv Healthc Mater. 2018;7(2):1700786. doi: 10.1002/adhm.201700786

[29]

Wice B, Menton D, Geuze H, Schwartz AL. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 1990;186(2):306-316. doi: 10.1016/0014-4827(90)90310-7

[30]

Das S, Jegadeesan JT, Basu B. Gelatin methacryloyl (GelMA)-based biomaterial inks: process science for 3D/4D printing and current status. Biomacromolecules. 2024;25(4):2156-2221. doi: 10.1021/acs.biomac.3c01271.

[31]

Tang C, Jin M, Ma B, et al. RGS2 promotes estradiol biosynthesis by trophoblasts during human pregnancy. Exp Mol Med. 2023;55(1):240-252. doi: 10.1038/s12276-023-00927-z

[32]

Shutt DA, Smith ID, Shearman RP. Oestrone, oestradiol- 17beta and oestriol levels in human foetal plasma during gestation and at term. J Endocrinol. 1974;60(2):333-341. doi: 10.1677/joe.0.0600333

[33]

Johnson MS, Jackson DL, Schust DJ. Endocrinology of pregnancy. In: Skinner MK, ed. Encyclopedia of Reproduction (Second Edition). Academic Press, Cambridge, MA, USA.; 2018:469-476. doi: 10.1016/B978-0-12-801238-3.64672-X

[34]

Malek A, Sager R, Schneider H. Transport of proteins across the human placenta. Am J Reprod Immunol. 1998;40(5):347-351. doi: 10.1111/j.1600-0897.1998.tb00064.x

[35]

Tal R, Taylor HS. Endocrinology of pregnancy. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G, et al., eds. Endotext. MDText.com, Inc., South Dartmouth, MA, USA.; 2000. http://www.ncbi.nlm.nih.gov/books/NBK278962/. Accessed May 15, 2025.

[36]

Kozler P, Pokorný J. Altered blood-brain barrier permeability and its effect on the distribution of Evans blue and sodium fluorescein in the rat brain applied by intracarotid injection. Physiol Res. 2003;52(5):607-14. doi: 10.33549/physiolres.930289

[37]

Wevers NR, Nair AL, Fowke TM, et al. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids Barriers CNS. 2021;18(1):59. doi: 10.1186/s12987-021-00294-9

[38]

Schaffenrath J, Huang SF, Wyss T, Delorenzi M, Keller A. Characterization of the blood–brain barrier in genetically diverse laboratory mouse strains. Fluids Barriers CNS. 2021;18(1):34. doi: 10.1186/s12987-021-00269-w

[39]

Zambuto SG, Clancy KBH, Harley BAC. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus. 2019;9(5):20190016. doi: 10.1098/rsfs.2019.0016

[40]

Kılıç F, Kayadibi Y, Yüksel MA, et al. Shear wave elastography of placenta: in vivo quantitation of placental elasticity in preeclampsia. Diagn Interv Radiol. 2015;21(3):202-207. doi: 10.5152/dir.2014.14338

[41]

Tarbell JM. Shear stress and the endothelial transport barrier. Cardiovasc Res. 2010;87(2):320-330. doi: 10.1093/cvr/cvq146

[42]

Blundell C, Tess ER, Schanzer ASR, et al. A microphysiological model of the human placental barrier. Lab Chip. 2016;16(16):3065-3073. doi: 10.1039/C6LC00259E

[43]

Boos JA, Misun PM, Brunoldi G, et al. Microfluidic co-culture platform to recapitulate the maternal–placental– embryonic axis. Adv Biol. 2021;5(8):2100609. doi: 10.1002/adbi.202100609

[44]

Bhide A, Aboo A, Sawant M, Majumder A, Paul D, Modi D. Placenta on chip: a modern approach to probe feto-maternal interface. In: Mohanan PV, ed. Microfluidics and Multi Organs on Chip. Springer Nature, Singapore.; 2022:359-380. doi: 10.1007/978-981-19-1379-2_16

[45]

Cole LA. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol. 2010;8(1):102. doi: 10.1186/1477-7827-8-102

[46]

Brandes JM, Tavoloni N, Potter BJ, Sarkozi L, Shepard MD, Berk PD. A new recycling technique for human placental cotyledon perfusion: Application to studies of the fetomaternal transfer of glucose, inulin, and antipyrine. Am J Obstetr Gynecol. 1983;146(7):800-806. doi: 10.1016/0002-9378(83)91081-5

[47]

Hahn T, Barth S, Weiss U, Mosgoeller W, Desoye G. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 1998;12(12):1221-1231. doi: 10.1096/fasebj.12.12.1221

[48]

Brownbill P, Sebire N, McGillick EV, Ellery S, Murthi P. Ex vivo dual perfusion of the human placenta: disease simulation, therapeutic pharmacokinetics and analysis of off-target effects. In: Murthi P, Vaillancourt C, eds. Preeclampsia: Methods and Protocols. Springer, New York, NY, USA.; 2018:173-189. doi: 10.1007/978-1-4939-7498-6_14

[49]

Kouthouridis S, Saha P, Ludlow M, N. Truong BY, Zhang B. Late-stage placental barrier model for transport studies of prescription drugs during pregnancy. Lab Chip. 2025;25(13):3168-3184. doi: 10.1039/D5LC00075K

[50]

Rabussier G, Bünter I, Bouwhuis J, et al. Healthy and diseased placental barrier on-a-chip models suitable for standardized studies. Acta Biomater. 2023;164:363-376. doi: 10.1016/j.actbio.2023.04.033

[51]

Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. J Immunol Res. 2012;2012(1):985646. doi: 10.1155/2012/985646

[52]

Karakis V, Britt JW, Jabeen M, San Miguel A, Rao BM. Derivation of human trophoblast stem cells from placentas at birth. J Biol Chem. 2025;301(6):108505. doi: 10.1016/j.jbc.2025.108505

AI Summary AI Mindmap
PDF (5822KB)

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/