3D-bioprinted osteocytes expressing Wnt7b protect osteoblast differentiation from microgravity

Jinling Zhang , Pengtao Wang , Xiaoling Chen , Saima Khan , Haiping Ouyang , Yangxi Liu , Bo He , Xian Li , Xing Liu , Xiaolin Tu

International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (4) : 426 -445.

PDF (38078KB)
International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (4) : 426 -445. DOI: 10.36922/IJB025240238
RESEARCH ARTICLE
research-article

3D-bioprinted osteocytes expressing Wnt7b protect osteoblast differentiation from microgravity

Author information +
History +
PDF (38078KB)

Abstract

Maintaining bone formation in microgravity/weightless environments remains a major challenge. Under weightless conditions, osteocytes act as mechanosensors to inhibit Wnt canonical signaling and bone formation by secreting sclerostin. This study explores whether osteocytic Wnt7b can counteract microgravity-induced bone loss through Wnt non-canonical signaling. Unlike previous bioprinting studies that focused on structural scaffolds or generic cell types, a novel bioprinted scaffold consisting of polycaprolactone (supportive) and osteocyte (functional) hydrogels was constructed in this study. Osteocytes overexpressing Wnt7b were co-cultured with bone marrow stromal cells (ST2) in a 3D biomimetic weightless biomicroenvironmental system (3D-BWBM) to assess osteogenic and lipogenic differentiation. The results indicated that osteocytic Wnt7b enhanced osteogenic differentiation and mineralization of ST2 cells via the Wnt non-canonical pathway PKCδ, while suppressing the expression of lipogenic markers (Pparg, Cebpa) and adipogenesis. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis revealed elevated expression of Sost and Mef2c, downregulation of the Wnt target gene Opg, and elevated expression of pro-osteoclastogenic cytokine Rankl and pro-inflammatory cytokines Tnfa and Il1b, thus validating the microgravity effect. Unlike conventional 2D culture of RCCS™ cells, the 3D hydrogels were printed with tunnels (500 μm) for efficient nutrient/ metabolite exchange, resulting in good cell growth, high cell viability (97%), and a six-fold increase in proliferative activity within 7 days. Wnt7b osteocytes were still able to maintain the osteogenic differentiation of ST2 cells, as evidenced by elevated alkaline phosphatase activity, mineralization (1.8-fold increase), and a decrease in osteoblast marker genes (Alpl, Runx2, Col1a1). In conclusion, Wnt7b-PCKδ signaling counteracts microgravity-induced bone loss, and further in vivo studies on osteocytic Wnt7b are warranted to confirm this causal relationship.

Keywords

3D bioprinting / Microgravity / Osteogenic differentiation / Wnt7b / Wnt noncanonical signaling

Cite this article

Download citation ▾
Jinling Zhang, Pengtao Wang, Xiaoling Chen, Saima Khan, Haiping Ouyang, Yangxi Liu, Bo He, Xian Li, Xing Liu, Xiaolin Tu. 3D-bioprinted osteocytes expressing Wnt7b protect osteoblast differentiation from microgravity. International Journal of Bioprinting, 2025, 11(4): 426-445 DOI:10.36922/IJB025240238

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers: 82471909, 81672118, and 32101053) and the Chongqing Natural Science Foundation (grant numbers: CSTB2022NSCQ-LZX0048 and CSTB2023NSCQ-MSX0424).

Conflict of interest

The authors declare they have no competing interests.

References

[1]

McCarthy ID. Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann Biomed Eng. 2005;33:95-103. doi: 10.1007/s10439-005-8967-6

[2]

Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004; 19: 1006-1012. doi: 10.1359/jbmr.040307

[3]

Durnova G, Kaplansky A, Morey-Holton E. Histomorphometric study of tibia of rats exposed aboard American spacelab life sciences 2 shuttle mission. J Gravit Physiol. 1996;3:80-81.

[4]

Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. Faseb J. 1999; 13(Suppl):S129-S134. doi: 10.1096/fasebj.13.9001.s129

[5]

Smith SM, Wastney ME, O’Brien KO, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J Bone Miner Res. 2005; 20:208-218. doi: 10.1359/jbmr.041105

[6]

Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol. 2018; 14: 229-245. doi: 10.1038/nrrheum.2018.37

[7]

Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485-506. doi: 10.1146/annurev-physiol-021119-034332

[8]

Delgado-Calle J, Bellido T. The osteocyte as a signaling cell. Physiol Rev. 2022; 102:379-410. doi: 10.1152/physrev.00043.2020

[9]

Spatz JM, Wein MN, Gooi JH, et al. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem. 2015; 290:16744-16758. doi: 10.1074/jbc.M114.628313

[10]

Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009; 24:1651-1661. doi: 10.1359/jbmr.090411

[11]

Tu X, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012; 50:209-217. doi: 10.1016/j.bone.2011.10.025

[12]

Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity stress: bone and connective tissue. Compr Physiol. 2016; 6:645-686. doi: 10.1002/cphy.c130027

[13]

Tu X, Joeng KS, Nakayama KI, et al. Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell. 2007; 12:113-127. doi: 10.1016/j.devcel.2006.11.003

[14]

Chen J, Tu X, Esen E, et al. WNT7B promotes bone formation in part through mTORC1. PLoS Genet. 2014;10:e1004145. doi: 10.1371/journal.pgen.1004145

[15]

Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in microgravity directed tissue engineering. Adv Healthc Mater. 2023;12:e2202768. doi: 10.1002/adhm.202202768

[16]

Bradbury P, Wu H, Choi JU, et al. Modeling the impact of microgravity at the cellular level: implications for human disease. Front Cell Dev Biol. 2020;8;96. doi: 10.3389/fcell.2020.00096

[17]

Silvani G, Basirun C, Wu H, et al. A 3D‐bioprinted vascularized glioblastoma‐on‐a‐chip for studying the impact of simulated microgravity as a novel pre‐clinical approach in brain tumor therapy. Adv Ther. 2021;4:2100106. doi: 10.1002/adtp.202100106

[18]

Van Ombergen A, Chalupa-Gantner F, Chansoria P, et al. 3D bioprinting in microgravity: opportunities, challenges, and possible applications in space. Adv Healthc Mater. 2023;12:e2300443. doi: 10.1002/adhm.202300443

[19]

Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016; 34:312-319. doi: 10.1038/nbt.3413

[20]

Mochi F, Scatena E, Rodriguez D, Ginebra M-P, Del Gaudio C. Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications. NPJ Microgravity. 2022;8:45. doi: 10.1038/s41526-022-00236-1

[21]

Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci USA. 2015;112:E478-E486. doi: 10.1073/pnas.1409857112

[22]

Morey-Holton ER, Globus RK. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone. 1998;22: 83S-88S. doi: 10.1016/S8756-3282(98)00019-2

[23]

Wang P, Wang X, Wang B, Li X. 3D printing of osteocytic Dll4 integrated with PCL for cell fate determination towards osteoblasts in vitro. Bio-Design Manuf. 2022;5: 497-511. doi: 10.1007/s42242-022-00196-1

[24]

Gong W, Li M, Zhao L, et al. Sustained release of a highly specific GSK3β inhibitor SB216763 in the PCL scaffold creates an osteogenic niche for osteogenesis, anti-adipogenesis, and potential angiogenesis. Front Bioeng Biotechnol. 2023;11:1215233. doi: 10.3389/fbioe.2023.1215233

[25]

Liu Y, Ruan X, Li J, et al. The osteocyte stimulated by Wnt agonist SKL2001 is a safe osteogenic niche improving bioactivities in a polycaprolactone and cell integrated 3d module. Cells. 2022;11:831. doi: 10.3390/cells11050831

[26]

Yuste I, Luciano FC, González-Burgos E, Lalatsa A, Serrano DR. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res. 2021;169:105626. doi: 10.1016/j.phrs.2021.105626

[27]

Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies. Nat Rev Immunol. 2024;24:18-32.doi: 10.1038/s41577-023-00896-4

[28]

Hammond TG, Hammond JM. Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol. 2001;281:F12-F25. doi: 10.1152/ajprenal.2001.281.1.F12

[29]

Wang X, Tu X, Ma Y, et al. Wnt3a-induced ST2 decellularized matrix ornamented PCL scaffold for bone tissue engineering. Biocell. 2022; 46:2089-2099. doi: 10.32604/biocell.2022.020069

[30]

Luo Y, Liu Y, Wang B, Tu X. CHIR99021-treated osteocytes with Wnt activation in 3D-printed module form an osteogenic microenvironment for enhanced osteogenesis and vasculogenesis. Int J Mol Sci. 2023;24:6008. doi: 10.3390/ijms24066008

[31]

Zhang J, Zhang Y, Chen J, Gong W, Tu X. The osteocyte with SB216763-activated canonical Wnt signaling constructs a multifunctional 4D intelligent osteogenic module. Biomolecules. 2024;14:354. doi: 10.3390/biom14030354

[32]

Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized 3D-printed ST2/gelatin methacryloyl/polcaprolactone scaffolds for enhancing bone regeneration with vascularization. Int J Mol Sci. 2022;23:8347. doi: 10.3390/ijms23158347

[33]

Abraham RT. Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell. 2002;111:9-12. doi: 10.1016/s0092-8674(02)01009-7

[34]

Gschwendt M, Muller HJ, Kielbassa K, et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun. 1994; 199:93-98. doi: 10.1006/bbrc.1994.1199

[35]

Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell. 1992; 71:713-716. doi: 10.1016/0092-8674(92)90546-o

[36]

Leupin O, Kramer I, Collette NM, et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res. 2007; 22:1957-1967. doi: 10.1359/jbmr.070804

[37]

Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008; 283:5866-5875. doi: 10.1074/jbc.M705092200

[38]

Spatz JM, Fields EE, Yu EW, et al. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab. 2012;97:E1736-E1740. doi: 10.1210/jc.2012-1579

[39]

Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr Osteoporos Rep. 2017;15: 318-325. doi: 10.1007/s11914-017-0373-0

[40]

Metzger CE, Anand Narayanan S, Phan PH, Bloomfield SA. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. NPJ Microgravity. 2020;6:28. doi: 10.1038/s41526-020-00118-4

[41]

Lau P, Vico L, Rittweger J. Dissociation of bone resorption and formation in spaceflight and simulated microgravity: potential role of myokines and osteokines? Biomedicines. 2022;10:342. doi: 10.3390/biomedicines10020342.

[42]

Zhang Y, Zhao Y, Xie Z, Li M, Liu Y, Tu X. Activating Wnt/β-catenin signaling in osteocytes promotes osteogenic differentiation of BMSCs through BMP-7. Int J Mol Sci. 2022;23:16045. doi: 10.3390/ijms232416045

[43]

Sapir-Koren R, Livshits G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporos Int. 2014;25:2685-2700. doi: 10.1007/s00198-014-2808-0

[44]

Yuan Z, Li Q, Luo S, et al. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2016;11:216-225. doi: 10.2174/1574888x10666150519093429

[45]

Borner C, Guadagno SN, Fabbro D, et al. Expression of four protein kinase C isoforms in rat fibroblasts. Differential alterations in ras-, src-, and fos-transformed cells. J Biol Chem. 1992; 267:12900-12910. doi: 10.1016/S0021-9258(18)42360-5

[46]

Ohno S, Akita Y, Hata A, et al. Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional cPKC and novel nPKC. Adv Enzyme Regul. 1991; 31:287-303. doi: 10.1016/0065-2571(91)90018-h

[47]

Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993; 291(Pt 2): 329-343. doi: 10.1042/bj2910329

[48]

Fleming I, MacKenzie SJ, Vernon RG, et al. Protein kinase C isoforms play differential roles in the regulation of adipocyte differentiation. Biochem J. 1998; 333(Pt 3):719-727. doi: 10.1042/bj3330719

[49]

Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009; 15:757-765. doi: 10.1038/nm.1979

[50]

Smith SM, Heer MA, Shackelford LC, et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012; 27:1896-1906. doi: 10.1002/jbmr.1647

[51]

Halloran BP, Bikle DD, Harris J, et al. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading. J Bone Miner Res. 1997; 12:1068-1074. doi: 10.1359/jbmr.1997.12.7.1068

[52]

Spatz JM, Ellman R, Cloutier AM, et al. Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing. Life Sci Space Res (Amst). 2017; 12: 32-38. doi: 10.1016/j.lssr.2017.01.001

[53]

Barbehenn EK, Lurie P, Wolfe SM. Osteosarcoma risk in rats using PTH 1-34. Trends Endocrinol Metab. 2001; 12:383. doi: 10.1016/s1043-2760(01)00489-1

[54]

Hildreth BE, 3rd, Werbeck JL, Thudi NK, et al. PTHrP 1-141 and 1-86 increase in vitro bone formation. J Surg Res. 2010; 162:e9-e17. doi: 10.1016/j.jss.2010.02.023

[55]

Costa-Almeida R, Granja PL, Gomes ME. Gravity, tissue engineering, and the missing link. Trends Biotechnol. 2018; 36:343-347. doi: 10.1016/j.tibtech.2017.10.017

[56]

Artegiani B, Clevers H. Use and application of 3D-organoid technology. Hum Mol Genet. 2018;27:R99-R107. doi: 10.1093/hmg/ddy187

[57]

He J, Zhang X, Xia X, et al. Organoid technology for tissue engineering. J Mol Cell Biol. 2020;12:569-579. doi: 10.1093/jmcb/mjaa012

[58]

Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering approaches for the advanced organoid research. Adv Mater. 2021;33:e2007949. doi: 10.1002/adma.202007949

[59]

Hwang YS, Cho J, Tay F, et al. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials. 2009; 30:499-507. doi: 10.1016/j.biomaterials.2008.07.028

[60]

Avitabile E, Fusco L, Minardi S, et al. Bioinspired scaffold action under the extreme physiological conditions of simulated space flights: osteogenesis enhancing under microgravity. Front Bioeng Biotechnol. 2020;8:722. doi: 10.3389/fbioe.2020.00722

[61]

Hann SY, Cui H, Esworthy T, et al. Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater. 2021; 123:263-274. doi: 10.1016/j.actbio.2021.01.012

[62]

Zhou F, Hong Y, Liang R, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials. 2020;258:120287. doi: 10.1016/j.biomaterials.2020.120287

[63]

Zhang W, Shi W, Wu S, et al. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication. 2020;12:035020. doi: 10.1088/1758-5090/ab906e

[64]

Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2020;112:110893. doi: 10.1016/j.msec.2020.110893

[65]

West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The role of the microenvironment in controlling the fate of bioprinted stem cells. Chem Rev. 2020; 120:11056-11092. doi: 10.1021/acs.chemrev.0c00126

AI Summary AI Mindmap
PDF (38078KB)

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/