Advancing modular microfluidics: Stereolithographic 3D printing of reconfigurable connectors for bioanalytical applications

Hong-Wei Zhang , Clara Tamura , Alireza Ahmadianyazdi , Albert Folch , Ting-Yuan Tu

International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 516 -531.

PDF (4122KB)
International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 516 -531. DOI: 10.36922/IJB025140125
RESEARCH ARTICLE
research-article

Advancing modular microfluidics: Stereolithographic 3D printing of reconfigurable connectors for bioanalytical applications

Author information +
History +
PDF (4122KB)

Abstract

Traditional monolithic microfluidic devices are constrained by their inability to accommodate modifications to circuit elements, necessitating complete redesign and refabrication. To address these limitations, this study introduces modular microfluidic connectors fabricated via stereolithographic (SL) 3D printing. We designed and evaluated three distinct connector types—tessellated, sponge, and solid-walled—using tailored photoresins to enhance reusability, flexibility, and sealing performance. The tessellated connectors, printed with poly(ethylene glycol) diacrylate (PEGDA; Mw ~258) and incorporating an octet unit cell structure, reduced the rigidity of PEGDA prints, improving reusability under moderate conditions. The sponge connectors, fabricated from a PEGDA and 2-hydroxyethyl acrylate (2-HEA; Mw ~116) blend (2-HEA-co-PEGDA), exhibited greater flexibility; however, swelling in aqueous environments may limit their long-term utility. In contrast, the solid-walled connectors, produced with commercial Asiga Soft Resin, demonstrated superior reliability and adaptability, as validated in a reconfigurable concentration gradient generator with scalable output capabilities. Cytocompatibility tests confirmed that PEGDA-printed devices, following isopropanol and ultraviolet post-processing, are suitable for bioanalytical applications that do not require incubation. These findings establish SL 3D printing as a promising method for developing flexible, reconfigurable microfluidic platforms, with potential uses in material synthesis, chemical analysis, and point-of-care diagnostics. While challenges related to environmental durability persist, these advances lay the foundations for developing more robust and adaptable microfluidic systems with versatile applications.

Keywords

3D printing / Stereolithography / Modular microfluidics

Cite this article

Download citation ▾
Hong-Wei Zhang, Clara Tamura, Alireza Ahmadianyazdi, Albert Folch, Ting-Yuan Tu. Advancing modular microfluidics: Stereolithographic 3D printing of reconfigurable connectors for bioanalytical applications. International Journal of Bioprinting, 2025, 11(3): 516-531 DOI:10.36922/IJB025140125

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This research was funded by the National Science and Technology Council (NSTC), Taiwan (NSTC 112-2628-B-006-014-MY3, NSTC 113-2321-B-006-019-, NSTC 113-2314-B-006-094-MY3, and NSTC 113-2740-B-006-002). We also acknowledge partial funding by the US National Cancer Institute (2R01CA181445). This research was also supported in part by the Higher Education Sprout Project, Ministry of Education, and the Headquarters of University Advancement at National Cheng Kung University, Taiwan.

Conflict of interest

The authors have no conflicts to disclose.

References

[1]

Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: microfluidics toward a Lab-on-a-Chip. Annu Rev Fluid Mech. 2004; 36(1):381-411.doi: 10.1146/annurev.fluid.36.050802.122124

[2]

Tu TY, Shen YP, Lim SH, Wang YK. A facile method for generating a smooth and tubular vessel lumen using a viscous fingering pattern in a microfluidic device. Front Bioeng Biotechnol. 2022;10:877480.doi: 10.3389/fbioe.2022.877480

[3]

Wang LC, Chang LC, Su GL, et al. Chemical structure and shape enhance mr imaging-guided X-ray therapy following marginative delivery. ACS Appl Mater Interfaces. 2022; 14(11):13056-13069.doi: 10.1021/acsami.1c24991

[4]

Whitesides GM. The origins and the future of microfluidics. Nature. 2006; 442(7101):368-373.doi: 10.1038/nature05058

[5]

Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014; 32(7):347-350.doi: 10.1016/j.tibtech.2014.04.010

[6]

Hsieh YF, Yang AS, Chen JW, et al. A Lego®-like swappable fluidic module for bio-chem applications. Sens Actuators B Chem. 2014; 204:489-496.doi: 10.1016/j.snb.2014.07.122

[7]

Vit FF, Nunes R, Wu YT, et al. A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal Chim Acta. 2021;1185:339068.doi: 10.1016/j.aca.2021.339068

[8]

Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for life sciences. J Nanobiotechnology. 2023; 21(1):85.doi: 10.1186/s12951-023-01846-x

[9]

Yuen PK, Bliss JT, Thompson CC, Peterson RC. Multidimensional modular microfluidic system. Lab Chip. 2009; 9(22):3303.doi: 10.1039/b912295h

[10]

Bhargava KC, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proceedings of the National Academy of Sciences. 2014; 111(42):15013-15018.doi: 10.1073/pnas.1414764111

[11]

Lee KG, Park KJ, Seok S, et al. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014; 4(62):32876-32880.doi: 10.1039/C4RA05072J

[12]

Tsuda S, Jaffery H, Doran D, et al. Customizable 3D printed ‘plug and play’ millifluidic devices for programmable fluidics. PLoS One. 2015; 10(11):e0141640.doi: 10.1371/journal.pone.0141640

[13]

Riche CT, Roberts EJ, Gupta M, Brutchey RL, Malmstadt N. Flow invariant droplet formation for stable parallel microreactors. Nat Commun. 2016; 7(1):10780.doi: 10.1038/ncomms10780

[14]

Naderi A, Bhattacharjee N, Folch A. Digital manufacturing for microfluidics. Annu Rev Biomed Eng. 2019;21:325-364.doi: 10.1146/annurev-bioeng-092618-020341

[15]

Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta. 2024;1299:342429.doi: 10.1016/j.aca.2024.342429

[16]

Lai X, Yang M, Wu H, Li D. Modular microfluidics: current status and future prospects. Micromachines (Basel). 2022; 13(8):1363.doi: 10.3390/mi13081363

[17]

Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016; 16(10):1720-1742.doi: 10.1039/c6lc00163g

[18]

Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D printed microfluidics. Annu Rev Anal Chem. 2020; 13(1):45-65.doi: 10.1146/annurev-anchem-091619-102649

[19]

Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering. 2024; 36:146-166.doi: 10.1016/j.eng.2024.01.028

[20]

Ong LJY, Ching T, Chong LH, et al. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multiorgan interactions. Lab Chip. 2019; 19(13):2178-2191.doi: 10.1039/C9LC00160C

[21]

Owens CE, Hart AJ. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip. 2018; 18(6):890-901.doi: 10.1039/C7LC00951H

[22]

Anshori I, Lukito V, Adhawiyah R, et al. Versatile and lowcost fabrication of modular lock-and-key microfluidics for integrated connector mixer using a stereolithography 3D printing. Micromachines (Basel). 2022; 13(8):1197.doi: 10.3390/mi13081197

[23]

Chen X, Mo D, Gong M. 3D printed reconfigurable modular microfluidic system for generating gel microspheres. Micromachines (Basel). 2020; 11(2):1-9.doi: 10.3390/mi11020224

[24]

Urrios A, Parra-Cabrera C, Bhattacharjee N, et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip. 2016; 16(12):2287-2294.doi: 10.1039/c6lc00153j

[25]

Jiang Y, Wang Q. Highly-stretchable 3D-architected mechanical metamaterials. Sci Rep. 2016;6:34147.doi: 10.1038/srep34147

[26]

Kim YT, Ahmadianyazdi A, Folch A. A ‘print-pause- print’ protocol for 3D printing microfluidics using multimaterial stereolithography. Nat Protoc. 2023; 18(4): 1243-1259.doi: 10.1038/s41596-022-00792-6

[27]

Ruiz C, Kadimisetty K, Yin K, Mauk MG, Zhao H, Liu C. Fabrication of hard-soft microfluidic devices using hybrid 3D printing. Micromachines (Basel). 2020; 11(6):567.doi: 10.3390/mi11060567

[28]

Venzac B, Deng S, Mahmoud Z, et al. PDMS curing inhibition on 3D-printed molds: why? Also, how to avoid it? Anal Chem. 2021; 93(19):7180-7187.doi: 10.1021/acs.analchem.0c04944

[29]

Ahmadianyazdi A, Miller IJ, Folch A. Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators. Lab Chip. 2023; 23(18):4019-4032.doi: 10.1039/D3LC00529A

[30]

de Almeida Monteiro Melo Ferraz M, Nagashima JB, Venzac B, Le Gac S, Songsasen N. 3D printed mold leachates in PDMS microfluidic devices. Sci Rep. 2020;10:994.doi: 10.1038/s41598-020-57816-y

[31]

Kreß S, Schaller-Ammann R, Feiel J, Priedl J, Kasper C, Egger D. 3D printing of cell culture devices: Assessment and prevention of the cytotoxicity of photopolymers for stereolithography. Materials. 2020; 13(13):3011.doi: 10.3390/ma13133011

[32]

Männel MJ, Fischer C, Thiele J. A non-cytotoxic resin for micro-stereolithography for cell cultures of HUVECs. Micromachines (Basel). 2020; 11(3):246.doi: 10.3390/mi11030246

[33]

Piironen K, Haapala M, Talman V, Järvinen P, Sikanen T. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices. Lab Chip. 2020; 20(13):2372-2382.doi: 10.1039/d0lc00114g

[34]

Kuo AP, Bhattacharjee N, Lee YS, Castro K, Kim YT, Folch A. High-precision stereolithography of biomicrofluidic devices. Adv Mater Technol. 2019; 4(6):1800395.doi: 10.1002/admt.201800395

[35]

Warr C, Valdoz JC, Bickham BP, et al. Biocompatible PEGDA resin for 3D printing. ACS Appl Bio Mater. 2020; 3(4):2239-2244.doi: 10.1021/acsabm.0c00055

[36]

Lee YS, Bhattacharjee N, Folch A. 3D-printed Quakestyle microvalves and micropumps. Lab Chip. 2018; 18(8):1207-1214.doi: 10.1039/c8lc00001h

[37]

Saini RS, Vaddamanu SK, Dermawan D, Mosaddad SA, Heboyan A. Investigating the role of temperature and moisture on the degradation of 3D-printed polymethyl methacrylate dental materials through molecular dynamics simulations. Sci Rep. 2024; 14(1):26079.doi: 10.1038/s41598-024-77736-5

[38]

Banjo AD, Agrawal V, Auad ML, Celestine ADN. Moisture-induced changes in the mechanical behavior of 3D printed polymers. Composites Part C: Open Access. 2022;7: 100243.doi: 10.1016/j.jcomc.2022.100243

[39]

Huang J, Chen Z, Wen C, Ling T, Chen Z. Thermally assisted 3D printing of bio-polymer with high solute loading with improved mechanical properties. Addit Manuf. 2022;59:103088.doi: 10.1016/j.addma.2022.103088

[40]

Afshar A, Mihut D. Enhancing durability of 3D printed polymer structures by metallization. J Mater Sci Technol. 2020; 53:185-191.doi: 10.1016/j.jmst.2020.01.072

AI Summary AI Mindmap
PDF (4122KB)

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/