Therapeutic effects of 3D-bioprinted mesenchymal stem cell-based artificial lymph nodes on lymphedema

Hyo Jin Kang , Ju-Hee Lee , Yong Xun Jin , Yujin Myung , Jae Hoon Jeong

International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 457 -474.

PDF (3922KB)
International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 457 -474. DOI: 10.36922/IJB025140124
RESEARCH ARTICLE
research-article

Therapeutic effects of 3D-bioprinted mesenchymal stem cell-based artificial lymph nodes on lymphedema

Author information +
History +
PDF (3922KB)

Abstract

Lymphedema is a condition resulting from impaired lymphatic function, with limited effective treatment options available. This study investigates the potential of 3D-bioprinted scaffolds, utilizing biomaterials and human adipose-derived stem cells (hADSCs), as a novel approach to promote lymphangiogenesis and improve treatment outcomes in lymphedema. Scaffolds were characterized for cell viability, mechanical properties through compressive strength testing, and structural integrity after printing. In vivo therapeutic effects were assessed in Sprague-Dawley rats through fluorescence imaging, histopathological analysis, and immunofluorescence staining. Additionally, protein and gene expression of lymphangiogenic markers (LYVE-1, VEGF-C, VEGF-A) were analyzed using Western blotting and quantitative polymerase chain reaction. The scaffolds demonstrated high cell viability, structural integrity, and mechanical stability, with enhanced cell distribution and extracellular matrix deposition over time. Scaffolds containing hADSCs showed the most lymph node-like characteristics, with a well-defined capsule and increased lymphocytic infiltration. Immunofluorescence analysis revealed enhanced expression of LYVE-1, Prox1, and CD31, indicating significant lymphatic and vascular remodeling. Additionally, upregulation of LYVE-1, VEGF-C, and VEGF-A protein and mRNA levels highlighted the scaffolds’ potential in promoting lymphangiogenesis and angiogenesis. These findings highlight the significant potential of hADSCs-loaded scaffolds in enhancing tissue regeneration, particularly in restoring lymphatic function in lymphedema.

Keywords

Bioprinting / Lymphedema / Lymph nodes / Lymphangiogenesis / Mesenchymal stem cells / Tissue engineering

Cite this article

Download citation ▾
Hyo Jin Kang, Ju-Hee Lee, Yong Xun Jin, Yujin Myung, Jae Hoon Jeong. Therapeutic effects of 3D-bioprinted mesenchymal stem cell-based artificial lymph nodes on lymphedema. International Journal of Bioprinting, 2025, 11(3): 457-474 DOI:10.36922/IJB025140124

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This research was supported by a Seoul National University Bundang Hospital grant (No. 14-2019-0010) and a research fund from Honam University, 2023 (No. 2023-0151).

Conflict of interest

The authors declare they have no competing interests.

References

[1]

Cornelissen AJM, Kool M, Keuter XHA, et al. Quality of life questionnaires in breast cancer-related lymphedema patients: review of the literature. Lymphat Res Biol. 2018; 16(2):134-139.doi: 10.1089/lrb.2017.0046

[2]

Bittar S, Simman R, Lurie F. Lymphedema: a practical approach and clinical update. Wounds. 2020; 32(3):86-92.

[3]

Jørgensen MG, Toyserkani NM, Hansen FG, Bygum A, Sørensen JA. The impact of lymphedema on health-related quality of life up to 10 years after breast cancer treatment. NPJ Breast Cancer. 2021; 7(1):70.doi: 10.1038/s41523-021-00276-y

[4]

Donahue PMC, MacKenzie A, Filipovic A, Koelmeyer L. Advances in the prevention and treatment of breast cancer-related lymphedema. Breast Cancer Res Treat. 2023; 200(1):1-14.doi: 10.1007/s10549-023-06947-7

[5]

Thompson B, Gaitatzis K, Janse de Jonge X, Blackwell R, Koelmeyer LA. Manual lymphatic drainage treatment for lymphedema: a systematic review of the literature. J Cancer Surviv. 2021; 15(2):244-258.doi: 10.1007/s11764-020-00928-1

[6]

Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016; 43(4):268-274.doi: 10.1159/000448180

[7]

Ren B, Betz OB, Seitz D, et al. Osteogenic differentiation of human adipose-derived stem cells seeded on a biomimetic spongiosa-like scaffold: bone morphogenetic Protein-2 delivery by overexpressing fascia. Int J Mol Sci. 2022; 23(5):2712.doi: 10.3390/ijms23052712

[8]

Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medicine: looking forward. Front Bioeng Biotechnol. 2022;9:837464.doi: 10.3389/fbioe.2021.837464

[9]

Lin HJ, Wang W, Huang YY, et al. Decellularized lymph node scaffolding as a carrier for dendritic cells to induce anti-tumor immunity. Pharmaceutics. 2019; 11(11):553.doi: 10.3390/pharmaceutics11110553

[10]

Cuzzone DA, Albano NJ, Aschen SZ, Ghanta S, Mehrara BJ. Decellularized lymph nodes as scaffolds for tissue engineered lymph nodes. Lymphat Res Biol. 2015; 13(3):186-194.doi: 10.1089/lrb.2013.0054

[11]

Kang HJ, Moon SY, Kim BK, Myung Y, Lee JH, Jeong JH. Recellularized lymph node scaffolds with human adiposederived stem cells enhance lymph node regeneration to improve lymphedema. Sci Rep. 2023; 13(1):5397.doi: 10.1038/s41598-023-32473-z

[12]

Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020; 10(1):14023.doi: 10.1038/s41598-020-70086-y

[13]

Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018; 6(5):915-946.doi: 10.1039/c7bm00765e

[14]

Arriola-Alvarez I, Jaunarena I, Izeta A, Lafuente H. Progenitor cell sources for 3D bioprinting of lymphatic vessels and potential clinical application. Tissue Eng Part A. 2024; 30(13-14):353-366.doi: 10.1089/ten.TEA.2023.0204

[15]

Tripathi S, Mandal SS, Bauri S, Maiti P.3D bioprinting and its innovative approach for biomedical applications. MedComm (2020). 2022; 4(1):e194.doi: 10.1002/mco2.194

[16]

Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020; 120(19):10793-10833.doi: 10.1021/acs.chemrev.0c00008

[17]

Levato R, Dudaryeva O, Garciamendez-Mijares CE, et al. Light-based vat-polymerization bioprinting. Nat Rev Methods Primers. 2023; 3(1):47.doi: 10.1038/s43586-023-00231-0

[18]

Ng WL, Shkolnikov V. Optimizing cell deposition for inkjetbased bioprinting. Int J Bioprint. 2024; 10(2):2135.doi: 10.36922/ijb.2135

[19]

Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent progress of the vat photopolymerization technique in tissue engineering: a brief review of mechanisms, methods, materials, and applications. Polymers (Basel). 2023; 15(19):3940.doi: 10.3390/polym15193940

[20]

Malekpour A, Chen X. Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views. J Funct Biomater. 2022; 13(2):40.doi: 10.3390/jfb13020040

[21]

Kang D, Hong G, An S, et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small. 2020; 16(13):e1905505.doi: 10.1002/smll.201905505

[22]

Yang GH, Kang D, An S, et al. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res. 2022; 26(1):73.doi: 10.1186/s40824-022-00321-2

[23]

Shafy SZ, Hakim M, Lynch S, Chen L, Tobias JD. Fluorescence imaging using indocyanine green dye in the pediatric population. J Pediatr Pharmacol Ther. 2020; 25(4): 309-313.doi: 10.5863/1551-6776-25.4.309

[24]

Morales-Conde S, Licardie E, Alarcón I, Balla A. Indocyanine green (ICG) fluorescence guide for the use and indications in general surgery: recommendations based on the descriptive review of the literature and the analysis of experience. Cir Esp (Engl Ed). 2022; 100(9):534-554.doi: 10.1016/j.cireng.2022.06.023

[25]

Jeong CG, Hollister SJ. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering. J Biomed Mater Res B Appl Biomater. 2010; 93(1):141-149.doi: 10.1002/jbm.b.31568

[26]

Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS. 2004; 112(7-8):526-538.doi: 10.1111/j.1600-0463.2004.apm11207-0811.x

[27]

Kong LL, Yang NZ, Shi LH, et al. The optimum marker for the detection of lymphatic vessels. Mol Clin Oncol. 2017; 7(4):515-520.doi: 10.3892/mco.2017.1356

[28]

Shin JW, Min M, Larrieu-Lahargue F, et al. Prox 1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell. 2006; 17(2):576-584.doi: 10.1091/mbc.e05-04-0368

[29]

Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox 1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002; 21(7):1505-1513.doi: 10.1093/emboj/21.7.1505

[30]

Harada K, Yamazaki T, Iwata C, et al. Identification of targets of Prox1 during in vitro vascular differentiation from embryonic stem cells: functional roles of HoxD8 in lymphangiogenesis. J Cell Sci. 2009; 122(Pt 21):3923-3930.doi: 10.1242/jcs.052324

[31]

Onimaru M, Yonemitsu Y, Fujii T, et al. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol. 2009; 297(5):H1685-H1696.doi: 10.1152/ajpheart.00015.2009

[32]

Shin JW, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood. 2008; 112(6):2318-2326.doi: 10.1182/blood-2008-05-156331

[33]

Grünherz L, Barbon C, von Reibnitz D, et al. Analysis of different outcome parameters and quality of life after different techniques of free vascularized lymph node transfer. J Vasc Surg Venous Lymphat Disord. 2024; 12(6):101934.doi: 10.1016/j.jvsv.2024.101934

[34]

Myung Y, Yun J, Beom J, et al. Evaluating the surgical outcome of lymphovenous anastomosis in breast cancer-related lymphedema using Tc-99m phytate lymphoscintigraphy: preliminary results. Lymphat Res Biol. 2024; 22(2):124-130.doi: 10.1089/lrb.2023.0036

[35]

Lo SL, Salman M, Chen WF. Debulking lymphatic liposuction: are the therapeutic effects limited to the treated limb? J Surg Oncol. 2025; 131(1):36-41.doi: 10.1002/jso.27985

[36]

Bani Monia OG, AlSaket GI, AlKadhimi AM, AlAzaideh AM, Salah BI. Multi-stage surgical debulking for advanced lower limb lymphedema: achieving cosmetic and functional success. Cureus. 2024; 16(11):e73053.doi: 10.7759/cureus.73053

[37]

Pajula S, Saarikko A, Suominen S, et al. Donor-site safety in microvascular lymph node transfer for breast cancer-related lymphedema using reverse lymphatic mapping-a prospective study. J Plast Reconstr Aesthet Surg. 2024; 98:20-31.doi: 10.1016/j.bjps.2024.08.063

[38]

Chen H, Zhang B, Huang J. Recent advances and applications of artificial intelligence in 3D bioprinting. Biophys Rev (Melville). 2024; 5(3):031301.doi: 10.1063/5.0190208

[39]

Lu D, Liu Y, Li W, et al. Development and application of 3D bioprinted scaffolds supporting induced pluripotent stem cells. Biomed Res Int. 2021;2021:4910816.doi: 10.1155/2021/4910816

[40]

Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. J Mol Cell Cardiol. 2022; 169:13-27.doi: 10.1016/j.yjmcc.2022.04.017

[41]

Sun Z, Zhao J, Leung E, et al. Three-dimensional bioprinting in cardiovascular disease: current status and future directions. Biomolecules. 2023; 13(8):1180.doi: 10.3390/biom13081180

[42]

Yan Y, Li X, Gao Y, et al. Bioprinting of human neural tissues with functional connectivity. Cell Stem Cell. 2024; 31(2):260-274.e7.doi: 10.1016/j.stem.2023.12.009

[43]

Sagar N, Chakravarti B, Maurya SS, Nigam A, Malakar P, Kashyap R. Unleashing innovation: 3D-printed biomaterials in bone tissue engineering for repairing femur and tibial defects in animal models - a systematic review and meta-analysis. Front Bioeng Biotechnol. 2024; 12:1385365.doi: 10.3389/fbioe.2024.1385365

[44]

Liang Q, Ma Y, Yao X, Wei W. Advanced 3D-printing bioinks for articular cartilage repair. Int J Bioprint. 2022; 8(3):511.doi: 10.18063/ijb.v8i3.511

[45]

Antezana PE, Municoy S, Álvarez-Echazú MI, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics. 2022; 14(2):464.doi: 10.3390/pharmaceutics14020464

[46]

Xie Z, Gao M, Lobo AO, Webster TJ. 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers (Basel). 2020; 12(8):1717.doi: 10.3390/polym12081717

[47]

Gupta S, Bit A. 3D bioprinting in tissue engineering and regenerative medicine. Cell Tissue Bank. 2022; 23(2):199-212.doi: 10.1007/s10561-021-09936-6

[48]

Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol. 2021;9:664188.doi: 10.3389/fbioe.2021.664188

[49]

Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501.doi: 10.1016/j.ijpharm.2021.120501

[50]

Ong CS, Yesantharao P, Huang CY, et al. 3D bioprinting using stem cells. Pediatr Res. 2018; 83(1-2):223-231.doi: 10.1038/pr.2017.252

[51]

Roshangar L, Rad JS, Kheirjou R, Khosroshahi AF. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J Tissue Eng Regen Med. 2021; 15(6):546-555.doi: 10.1002/term.3194

[52]

Kim M, Choi S, Choi DH, et al. An advanced 3D lymphatic system for assaying human cutaneous lymphangiogenesis in a microfluidic platform. NPG Asia Mater. 2024;16:7.doi: 10.1038/s41427-023-00527-3

[53]

Sung CJ, Gupta K, Wang J, Wong AK. Lymphatic tissue bioengineering for the treatment of postsurgical lymphedema. Bioengineering (Basel). 2022; 9(4):162.doi: 10.3390/bioengineering9040162

[54]

Chang C, Yan J, Yao Z, Zhang C, Li X, Mao HQ. Effects of mesenchymal stem cell-derived paracrine signals and their delivery strategies. Adv Healthc Mater. 2021; 10(7):e2001689.doi: 10.1002/adhm.202001689

[55]

Abdreshov SN, Demchenko GA, Yeshmukhanbet AN, et al. Morphofunctional alteration of mesenteric lymph nodes in the inflammation of the abdominal cavity. Biology (Basel). 2024; 13(3):166.doi: 10.3390/biology13030166

AI Summary AI Mindmap
PDF (3922KB)

263

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/