Recent advances in 3D bioprinting for cartilage and osteochondral regeneration

Yahao Lai , Jiaxuan Fan , Peilin Li , Xuanhe You , Hui Pan , Zongke Zhou , Zeyu Luo

International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 154 -184.

PDF (1894KB)
International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 154 -184. DOI: 10.36922/IJB025120098
REVIEW ARTICLE
research-article

Recent advances in 3D bioprinting for cartilage and osteochondral regeneration

Author information +
History +
PDF (1894KB)

Abstract

Cartilage and osteochondral tissues are vital tissues in the human body for normal activities. Cartilage and osteochondral defects represent prevalent clinical entities due to the limited regenerative capacity of the corresponding tissues. This growing disease burden underscores the urgent need for advanced therapeutic strategies facilitating both cartilage and osteochondral regeneration. With advancements in bioprinting technology, cartilage and osteochondral tissue engineering offers new hope for treatment. However, bioprinting of cartilage and osteochondral tissue still faces significant challenges, including replicating the mechanical properties and lubrication function of cartilage and osteochondral tissue, as well as mimicking the structural complexity of bone-cartilage tissues. In recent years, the development of innovative bioinks and novel bioprinting technologies has provided new solutions for the biomanufacturing of cartilage and osteochondral tissue. This article systematically reviews the latest developments in the field of bioprinting for cartilage and osteochondral tissue engineering, addressing potential directions, challenges, and covering topics, such as bioprinting techniques, bioinks, and recent advancements in cartilage and osteochondral regeneration. Through this article, future potential directions and existing challenges in the bioprinting of cartilage and osteochondral tissue can be further clarified.

Keywords

3D bioprinting / Biofabrication / Cartilage / Composite ink / Extrusion-based printing / Hydrogel

Cite this article

Download citation ▾
Yahao Lai, Jiaxuan Fan, Peilin Li, Xuanhe You, Hui Pan, Zongke Zhou, Zeyu Luo. Recent advances in 3D bioprinting for cartilage and osteochondral regeneration. International Journal of Bioprinting, 2025, 11(3): 154-184 DOI:10.36922/IJB025120098

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was supported by the National Natural Science Foundation of China (82302786), the China Postdoctoral Science Foundation (BX20230245 and 2023M742478), the Sichuan Science and Technology Program (2023YFH0068), the Sichuan Province Innovative Talent Funding Projectfor Postdoctoral Fellows (BX202203), the Sichuan University Postdoctoral Interdisciplinary Innovation Fund (JCXK2226), and the Postdoctoral Research and Development Fund of West China Hospital, Sichuan University (2023HXBH012).

Conflict of interest

The authors declare they have no competing interests.

References

[1]

Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999; 354(Suppl 1):SI32-S134.doi: 10.1016/s0140-6736(99)90247-7

[2]

Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017; 45(1):148-163.doi: 10.1007/s10439-016-1612-8

[3]

Heinrich MA, Liu W, Jimenez A, et al. 3D Bioprinting: from benches to translational applications. Small (Weinheim an der Bergstrasse, Germany). 2019; 15(23):e1805510.doi: 10.1002/smll.201805510

[4]

Ravanbakhsh H, Bao G, Luo Z, Mongeau LG, Zhang YS. Composite inks for extrusion printing of biological and biomedical constructs. ACS Biomater Sci Eng. 2020; 7(9):4009-4026.doi: 10.1021/acsbiomaterials.0c01158

[5]

Montesdeoca CYC, Stocco TD, Marciano FR, Webster TJ, Lobo AO. 3D bioprinting of smart oxygen-releasing cartilage scaffolds. J Funct Biomater. 2022; 13(4):252.doi: 10.3390/jfb13040252

[6]

Mei Q, Rao J, Bei HP, Liu Y, Zhao X. 3D bioprinting photo-crosslinkable hydrogels for bone and cartilage repair. Int J Bioprint. 2021; 7(3):367.doi: 10.18063/ijb.v7i3.367

[7]

Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009; 37(1-2):1-57.doi: 10.1615/critrevbiomedeng.v37.i1-2.10

[8]

Luo Z, Mu X, Zhang YS. Biomaterials for bioprinting. Bioprinting. Academic Press; 2022:51-86.doi: 10.1016/B978-0-323-85430-6.00001-7

[9]

Luo Z-Y, Wang H-Y, Wang D, Zhou K, Pei F-X, Zhou Z-K. Oral vs intravenous vs topical tranexamic acid in primary hip arthroplasty: a prospective, randomized, double-blind, controlled study. J Arthroplasty. 2018; 33(3):786-793.doi: 10.1016/j.arth.2017.09.062

[10]

Luo Z-Y, Li L-L, Wang D, Wang H-Y, Pei F-X, Zhou Z-K. Preoperative sleep quality affects postoperative pain and function after total joint arthroplasty: a prospective cohort study. J Orthop Surg Res. 2019; 14(1):1-10.doi: 10.1186/s13018-019-1446-9

[11]

Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639.doi: 10.1016/j.biomaterials.2022.121639

[12]

Li X, Liu B, Pei B, et al. Inkjet Bioprinting of Biomaterials. Chem Rev. 2020; 120(19):10793-10833.doi: 10.1021/acs.chemrev.0c00008

[13]

Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016; 34(4):422-434.doi: 10.1016/j.biotechadv.2015.12.011

[14]

Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016; 102:20-42.doi: 10.1016/j.biomaterials.2016.06.012

[15]

Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater. 2022; 34(31):e2105015.doi: 10.1002/adma.202105015

[16]

Kim YK, Park JA, Yoon WH, Kim J, Jung S. Drop-on-demand inkjet-based cell printing with 30-μm nozzle diameter for cell-level accuracy. Biomicrofluidics. 2016; 10(6):064110.doi: 10.1063/1.4968845

[17]

Bishop ES, Mostafa S, Pakvasa M, et al. 3D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017; 4(4):185-195.doi: 10.1016/j.gendis.2017.10.002

[18]

Hendriks J, Willem Visser C, Henke S, et al. Optimizing cell viability in droplet-based cell deposition. Sci Rep. 2015;5:11304.doi: 10.1038/srep11304

[19]

Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends Biotechnol. 2015; 33(9):504-513.doi: 10.1016/j.tibtech.2015.06.007

[20]

Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016; 42(7):1019-1031.doi: 10.3109/03639045.2015.1120743

[21]

Huang J, Xiong J, Wang D, et al. 3D bioprinting of hydrogels for cartilage tissue engineering. Gels. 2021; 7(3):144.doi: 10.3390/gels7030144

[22]

Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020; 15(5):529-557.doi: 10.1016/j.ajps.2019.11.003

[23]

Tang G, Luo Z, Lian L, et al. Liquid-embedded (bio) printing of alginate-free, standalone, ultrafine, and ultrathinwalled cannular structures. Proc Natl Acad Sci U S A. 2023; 120(7):e2206762120.doi: 10.1073/pnas.2206762120

[24]

Rossi A, Pescara T, Gambelli AM, et al. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol. 2024;12:1393641.doi: 10.3389/fbioe.2024.1393641

[25]

Nair K, Gandhi M, Khalil S, et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009; 4(8):1168-1177.doi: 10.1002/biot.200900004

[26]

Ravanbakhsh H, Luo Z, Zhang X, et al. Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter. 2021; 5(2):573-593.doi: 10.1016/j.matt.2021.11.020

[27]

Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin methacryloyl (GelMA) bioink toolbox 2.0: designable tunability and adaptability for 3D bioprinting applications. Small. 2022; 18(25):e2106357.doi: 10.1002/smll.202106357

[28]

Wang M, Li W, Hao J, et al. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat Commun. 2022; 13(1):3317.doi: 10.1038/s41467-022-31002-2

[29]

Raman R, Bhaduri B, Mir M, et al. High-resolution projection microstereolithography for patterning of neovasculature. Adv Healthc Mater. 2016; 5(5):610-619.doi: 10.1002/adhm.201500721

[30]

Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater. 2017; 6(22).doi: 10.1002/adhm.201700298

[31]

Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Review. Polym Chem. 2017; 8(31):4451-4471.doi: 10.1039/c7py00826k

[32]

Debnath S, Agrawal A, Jain N, Chatterjee K, Player DJ. Collagen as a bio-ink for 3D printing: a critical review. J Mater Chem B. 2025; 13(6):1890-1919.doi: 10.1039/d4tb01060d

[33]

Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res Part B, Appl Biomater. 2021; 109(12):1986-1999.doi: 10.1002/jbm.b.34881

[34]

Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Review. Biomater Sci. 2022; 10(19):5430-5458.doi: 10.1039/d2bm00709f

[35]

Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017; 35(2):217-239.doi: 10.1016/j.biotechadv.2016.12.006

[36]

Buma P, Pieper JS, van Tienen T, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects—a study in rabbits. Article. Biomaterials. 2003; 24(19):3255-3263.doi: 10.1016/s0142-9612(03)00143-1

[37]

Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Article. Biotechnol Bioeng. 2006; 93(6):1152-1163.doi: 10.1002/bit.20828

[38]

Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting of collagen: considerations, potentials, and applications. Review. Macromol Biosci. 2021; 21(1):2000280.doi: 10.1002/mabi.202000280

[39]

Diamantides N, Wang L, Pruiksma T, et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Article. Biofabrication. 2017; 9(3):034102.doi: 10.1088/1758-5090/aa780f

[40]

Beketov EE, Isaeva EV, Yakovleva ND, et al. Bioprinting of cartilage with bioink based on high-concentration collagen and chondrocytes. Article. Int J Mol Sci. 2021; 22(21):11351.doi: 10.3390/ijms222111351

[41]

Jiang W, Li L, Zhang D, et al. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater. 2015; 25:240-252.doi: 10.1016/j.actbio.2015.07.023

[42]

Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016; 2(10):1800-1805.doi: 10.1021/acsbiomaterials.6b00288

[43]

Shim JH, Jang KM, Hahn SK, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016; 8(1):014102.doi: 10.1088/1758-5090/8/1/014102

[44]

Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in gelatin bioinks to optimize bioprinted cell functions. Review. Adv Healthc Mater. 2023; 12(17).doi: 10.1002/adhm.202203148

[45]

Wang X, Ao Q, Tian X, et al. Gelatin-based hydrogels for organ 3D bioprinting. Review. Polymers. 2017; 9(9):401.doi: 10.3390/polym9090401

[46]

Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Review. Polymers. 2018; 10(11):1290.doi: 10.3390/polym10111290

[47]

Sathish PB, Gayathri S, Priyanka J, et al. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Article. Int J Biol Macromol. 2022; 195:179-189.doi: 10.1016/j.ijbiomac.2021.11.184

[48]

Re F, Sartore L, Moulisova V, et al. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. Article. J Tissue Eng. 2019;10:2041731419845852.doi: 10.1177/2041731419845852

[49]

Wang D, Maharjan S, Kuang X, et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci Adv. 2022; 8(43):eabq6900.doi: 10.1126/sciadv.abq6900

[50]

He H, Li D, Lin Z, et al. Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting. Article. Biofabrication. 2020; 12(4):045003.doi: 10.1088/1758-5090/ab9906

[51]

Li J, Zhang Y, Zhou X, et al. Enzymatically functionalized RGD-gelatin scaffolds that recruit host mesenchymal stem cells in vivo and promote bone regeneration. J Colloid Interface Sci. 2022; 612:377-391.doi: 10.1016/j.jcis.2021.12.091

[52]

Souza A, Kevin M, Rodriguez BJ, Reynaud EG. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour in vitro. Biomed Mater (Bristol, England). 2024; 19(4).doi: 10.1088/1748-605X/ad51bf

[53]

Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng. 2021; 5(1):010904.doi: 10.1063/5.0032777

[54]

Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ Res. 2020; 127(2):207-224.doi: 10.1161/circresaha.119.316155

[55]

Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007; 32(8-9):991-1007.doi: 10.1016/j.progpolymsci.2007.05.013

[56]

Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. Article. ACS Appl Mater Interfaces. 2019; 11(37):33684-33696.doi: 10.1021/acsami.9b11644

[57]

Schacht K, Juengst T, Schweinlin M, Ewald A, Groll J, Scheibel T. Biofabrication of cell-loaded 3D spider silk constructs. Article. Angew Chem Int Ed. 2015; 54(9):2816-2820.doi: 10.1002/anie.201409846

[58]

Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Article. Adv Mater. 2011; 23(12):H41-H56.doi: 10.1002/adma.201003963

[59]

Pescosolido L, Schuurman W, Malda J, et al. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Article. Biomacromolecules. 2011; 12(5):1831-1838.doi: 10.1021/bm200178w

[60]

Hauptstein J, Boeck T, Bartolf-Kopp M, et al. Hyaluronic acid-based bioink composition enabling 3d bioprinting and improving quality of deposited cartilaginous extracellular matrix. Article. Adv Healthc Mater. 2020; 9(15):2000737.doi: 10.1002/adhm.202000737

[61]

Gong J, Schuurmans CCL, van Genderen AM, et al. Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Article. Nat Commun. 2020; 11(1):1267.doi: 10.1038/s41467-020-14997-4

[62]

Antich C, de Vicente J, Jimenez G, et al. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Article. Acta Biomater. 2020; 106:114-123.doi: 10.1016/j.actbio.2020.01.046

[63]

Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012; 37(1):106-126.doi: 10.1016/j.progpolymsci.2011.06.003

[64]

Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Research support, N.I.H., extramural; research support, U.S. Gov’t, Non-P.H.S. Acta Biomater. 2014; 10(10):4323-4331.doi: 10.1016/j.actbio.2014.06.034

[65]

Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Article. Mater Sci Eng C-Mater Biol Appl. 2018; 83:195-201.doi: 10.1016/j.msec.2017.09.002

[66]

He Y, Derakhshanfar S, Zhong W, et al. Characterization and application of carboxymethyl chitosan-based bioink in cartilage tissue engineering. Article. J Nanomater. 2020; 2020(1): 2057097.doi: 10.1155/2020/2057097

[67]

Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G. Effects of chitosan on rat knee cartilages. Article. Biomaterials. 1999; 20(20):1937-1944.doi: 10.1016/s0142-9612(99)00097-6

[68]

Huang H, Zhang X, Hu X, et al. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Article. Biomed Mater. 2014; 9(3):035008.doi: 10.1088/1748-6041/9/3/035008

[69]

Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Review. Methods. 2015; 84:25-34.doi: 10.1016/j.ymeth.2015.03.005

[70]

Sellaro TL, Ranade A, Faulk DM, et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Article. Tissue Eng Part A. 2010; 16(3):1075-1082.doi: 10.1089/ten.tea.2008.0587

[71]

Sutherland AJ, Converse GL, Hopkins RA, Detamore MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Review. Adv Healthc Mater. 2015; 4(1):29-39.doi: 10.1002/adhm.201400165

[72]

Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK. Decellularized extracellular matrix: new promising and challenging biomaterials for regenerative medicine. Article. Biomaterials. 2022;289:121786.doi: 10.1016/j.biomaterials.2022.121786

[73]

Liu C, Jin Z, Ge X, Zhang Y, Xu H. Decellularized annulus fibrosus matrix/chitosan hybrid hydrogels with basic fibroblast growth factor for annulus fibrosus tissue engineering. Article. Tissue Eng Part A. 2019; 25(23-24):1605-1613.doi: 10.1089/ten.tea.2018.0297

[74]

Franc S, Rousseau JC, Garrone R, van der Rest M, Moradi-Améli M. Microfibrillar composition of umbilical cord matrix: characterization of fibrillin, collagen VI and intact collagen V. Placenta. 1998; 19(1):95-104.doi: 10.1016/s0143-4004(98)90104-7

[75]

Sobolewski K, Małkowski A, Bańkowski E, Jaworski S. Wharton’s jelly as a reservoir of peptide growth factors. Placenta. 2005; 26(10):747-752.doi: 10.1016/j.placenta.2004.10.008

[76]

Xiao T, Guo W, Chen M, et al. Fabrication and in vitro study of tissue-engineered cartilage scaffold derived from Wharton’s jelly extracellular matrix. Biomed Res Int. 2017;2017:5839071.doi: 10.1155/2017/5839071

[77]

Valot L, Martinez J, Mehdi A, Subra G. Chemical insights into bioinks for 3D printing. Review. Chem Soc Rev. 2019; 48(15):4049-4086.doi: 10.1039/c7cs00718c

[78]

Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Review. Biomater Res. 2018;22:11-11.doi: 10.1186/s40824-018-0122-1

[79]

Lin C-C, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Review. Pharm Res. 2009; 26(3):631-643.doi: 10.1007/s11095-008-9801-2

[80]

Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Review. Adv Healthc Mater. 2020; 9(15): 1901648.doi: 10.1002/adhm.201901648

[81]

Wolberg AS. Thrombin generation and fibrin clot structure. Blood Rev. 2007; 21(3):131-142.doi: 10.1016/j.blre.2006.11.001

[82]

Piechocka IK, Kurniawan NA, Grimbergen J, Koopman J, Koenderink GH. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening. J Thromb Haemost. 2017; 15(5):938-949.doi: 10.1111/jth.13650

[83]

de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020; 117:60-76.doi: 10.1016/j.actbio.2020.09.024

[84]

Chiu CL, Hecht V, Duong H, Wu B, Tawil B. Permeability of three-dimensional fibrin constructs corresponds to fibrinogen and thrombin concentrations. Biores Open Access. 2012; 1(1):34-40.doi: 10.1089/biores.2012.0211

[85]

Duong H, Wu B, Tawil B. Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen-thrombin compositions and by extrinsic cellular activity. Tissue Eng Part A. 2009; 15(7):1865-1876.doi: 10.1089/ten.tea.2008.0319

[86]

Snyder TN, Madhavan K, Intrator M, Dregalla RC, Park D. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng. 2014;8:10.doi: 10.1186/1754-1611-8-10

[87]

Arulmoli J, Wright HJ, Phan DTT, et al. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater. 2016; 43:122-138.doi: 10.1016/j.actbio.2016.07.043

[88]

Singaravelu S, Ramanathan G, Raja MD, et al. Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application. Int J Biol Macromol. 2016; 86:810-819.doi: 10.1016/j.ijbiomac.2016.02.021

[89]

Deepthi S, Jayakumar R. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering. Bioact Mater. 2018; 3(2):194-200.doi: 10.1016/j.bioactmat.2017.09.005

[90]

Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009; 30(31):6221-6227.doi: 10.1016/j.biomaterials.2009.07.056

[91]

de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties. Adv Funct Mater. 2019; 29(51).doi: 10.1002/adfm.201906330

[92]

Tang-Schomer MD, White JD, Tien LW, et al. Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci U S A. 2014; 111(38):13811-13816.doi: 10.1073/pnas.1324214111

[93]

Anil Kumar S, Alonzo M, Allen SC, et al. A visible light-cross-linkable, fibrin-gelatin-based bioprinted construct with human cardiomyocytes and fibroblasts. ACS Biomater Sci Eng. 2019; 5(9):4551-4563.doi: 10.1021/acsbiomaterials.9b00505

[94]

Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016; 9(1):015006.doi: 10.1088/1758-5090/9/1/015006

[95]

Costantini M, Testa S, Mozetic P, et al. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials. 2017; 131:98-110.doi: 10.1016/j.biomaterials.2017.03.026

[96]

de la Vega L, Gomez DAR, Abelseth E, Abelseth L, da Silva VA, Willerth SM. 3D bioprinting human induced pluripotent stem cell-derived neural tissues using a novel lab-on-a-printer technology. Appl Sci-Basel. 2018; 8(12):2414.doi: 10.3390/app8122414

[97]

Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016; 34(3):312-319.doi: 10.1038/nbt.3413

[98]

Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008; 26(1):127-134.doi: 10.1634/stemcells.2007-0520

[99]

Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-beta 3/BMP-7 combinations driving strong chondrogenic differentiation. Article. Eur J Pharm Biopharm. 2017; 114:69-78.doi: 10.1016/j.ejpb.2016.12.021

[100]

Liu F, Wang X. Synthetic polymers for organ 3D printing. Review. Polymers. 2020; 12(8):1765.doi: 10.3390/polym12081765

[101]

Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Article. Adv Mater. 2011; 23(24):H178-H183.doi: 10.1002/adma.201004625

[102]

Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Review. Biomaterials. 2010; 31(17):4639-4656.doi: 10.1016/j.biomaterials.2010.02.044

[103]

Serra T, Ortiz-Hernandez M, Engel E, Planell JA, Navarro M. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Article. Mater Sci Eng C-Mater Biol Appl. 2014; 38:55-62.doi: 10.1016/j.msec.2014.01.003

[104]

Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Article. Adv Mater. 2015; 27(9):1607-1614.doi: 10.1002/adma.201405076

[105]

Mukherjee P, Chung J, Cheng K, et al. In vitro and In vivo study of PCL-hydrogel scaffold to advance bioprinting translation in microtia reconstruction. Article. J Craniofac Surg. 2021; 32(5):1931-1936.doi: 10.1097/scs.0000000000007173

[106]

Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Article. Biofabrication. 2016; 8(4):045002.doi: 10.1088/1758-5090/8/4/045002

[107]

Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. Review. J Appl Microbiol. 2019; 127(6):1612-1626.doi: 10.1111/jam.14290

[108]

Ritz U, Gerke R, Goetz H, Stein S, Rommens PM. A new bone substitute developed from 3D-prints of polylactide (PLA) loaded with collagen I: an in vitro study. Article. Int J Mol Sci. 2017; 18(12):2569.doi: 10.3390/ijms18122569

[109]

Graf N, Bielenberg DR, Kolishetti N, et al. Alpha(V)beta(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. Article. ACS Nano. 2012; 6(5):4530-4539.doi: 10.1021/nn301148e

[110]

Jin S, Xia X, Huang J, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Review. Acta Biomater. 2021; 127:56-79.doi: 10.1016/j.actbio.2021.03.067

[111]

Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. Review. J Biomed Mater Res Part B Appl Biomater. 2011; 98B(1):160-170.doi: 10.1002/jbm.b.31831

[112]

Mueller M, Becher J, Schnabelrauch M, Zenobi-Wong M. Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Article. Biofabrication. 2015; 7(3):035006.doi: 10.1088/1758-5090/7/3/035006

[113]

Madry H, Gao L, Rey-Rico A, et al. Thermosensitive hydrogel based on PEO-PPO-PEO poloxamers for a controlled in situ release of recombinant adeno-associated viral vectors for effective gene therapy of cartilage defects. Article. Adv Mater. 2020; 32(2):1906508.doi: 10.1002/adma.201906508

[114]

Nakanishi W, Minami K, Shrestha LK, Ji Q, Hill JP, Ariga K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Review. Nano Today. 2014; 9(3):378-394.doi: 10.1016/j.nantod.2014.05.002

[115]

Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: a review on structure and their interaction with proteins. Review. J Chem. 2013;2013:676815.doi: 10.1155/2013/676815

[116]

Tanaka M, Sato Y, Zhang M, et al. In vitro and in vivo evaluation of a three-dimensional porous multi-walled carbon nanotube scaffold for bone regeneration. Nanomaterials (Basel). 2017; 7(2).doi: 10.3390/nano7020046

[117]

Usui Y, Aoki K, Narita N, et al. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small. 2008; 4(2):240-246.doi: 10.1002/smll.200700670

[118]

Shimizu M, Kobayashi Y, Mizoguchi T, etal. Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv Mater. 2012; 24(16):2176-2185.doi: 10.1002/adma.201103832

[119]

Trzeciak T, Rybka JD, Akinoglu EM, Richter M, Kaczmarczyk J, Giersig M. In vitro evaluation of carbon nanotube-based scaffolds for cartilage tissue engineering. Article. J Nanosci Nanotechnol. 2016; 16(9):9022-9025.doi: 10.1166/jnn.2016.12733

[120]

Szymański T, Mieloch AA, Richter M, et al. Utilization of carbon nanotubes in manufacturing of 3D cartilage and bone scaffolds. Materials (Basel). 2020; 13(18):4039.doi: 10.3390/ma13184039

[121]

Stocco TD, Moreira Silva MC, Corat MAF, Gonçalves Lima G, Lobo AO. Towards bioinspired meniscus-regenerative scaffolds: engineering a novel 3D bioprinted patient-specific construct reinforced by biomimetically aligned nanofibers. Int J Nanomed. 2022; 17:1111-1124.doi: 10.2147/ijn.S353937

[122]

Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019; 9(45):26252-26262.doi: 10.1039/c9ra05214c

[123]

Du Z, Feng X, Cao G, et al. The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism. Bioact Mater. 2021; 6(2):333-345.doi: 10.1016/j.bioactmat.2020.08.015

[124]

Wang W, Huang B, Byun JJ, Bártolo P. Assessment of PCL/carbon material scaffolds for bone regeneration. J Mech Behav Biomed Mater. 2019; 93:52-60.doi: 10.1016/j.jmbbm.2019.01.020

[125]

Gonçalves EM, Oliveira FJ, Silva RF, et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater. 2016; 104(6):1210-1219.doi: 10.1002/jbm.b.33432

[126]

Chahine NO, Collette NM, Thomas CB, Genetos DC, Loots GG. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization. Tissue Eng Part A. 2014; 20(17-18):2305-2315.doi: 10.1089/ten.TEA.2013.0328

[127]

Deligianni DD. Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells’ spreading but delay their proliferation in the direction of differentiation acceleration. Editorial Material. Cell Adh Migr. 2014; 8(6):558-562.doi: 10.4161/cam.32124

[128]

Castranova V, Schulte PA, Zumwalde RD. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res. 2013; 46(3):642-649.doi: 10.1021/ar300004a

[129]

Aldieri E, Fenoglio I, Cesano F, et al. The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J Toxicol Environ Health A. 2013; 76(18):1056-1071.doi: 10.1080/15287394.2013.834855

[130]

Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011; 40(7):3941-3994.doi: 10.1039/c0cs00108b

[131]

Ferreira PJT, Lourenço AF. Nanocelluloses: production, characterization and market. Adv Exp Med Biol. 2022;1357:129-151.doi: 10.1007/978-3-030-88071-2_6

[132]

Yang J, Han CR, Duan JF, Xu F, Sun RC. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces. 2013; 5(8):3199-3207.doi: 10.1021/am4001997

[133]

Cui Y, Jin R, Zhang Y, Yu M, Zhou Y, Wang LQ. Cellulose nanocrystal-enhanced thermal-sensitive hydrogels of block copolymers for 3D bioprinting. Int J Bioprint. 2021; 7(4):397.doi: 10.18063/ijb.v7i4.397

[134]

Liu M, Zhang Y, Wu C, Xiong S, Zhou C. Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol. 2012; 51(4):566-575.doi: 10.1016/j.ijbiomac.2012.06.022

[135]

Liu M, Dai L, Shi H, Xiong S, Zhou C. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2015; 49:700-712.doi: 10.1016/j.msec.2015.01.037

[136]

Huang B, Liu M, Long Z, Shen Y, Zhou C. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater Sci Eng C Mater Biol Appl. 2017; 70(Pt 1):303-310.doi: 10.1016/j.msec.2016.09.001

[137]

Roushangar Zineh B, Shabgard MR, Roshangar L. An experimental study on the mechanical and biological properties of bio-printed alginate/halloysite nanotube/methylcellulose/Russian olive-based scaffolds. Adv Pharm Bull. 2018; 8(4):643-655.doi: 10.15171/apb.2018.073

[138]

Chakraborty J, Fernández-Pérez J, van Kampen KA, et al. Development of a biomimetic arch-like 3D bioprinted construct for cartilage regeneration using gelatin methacryloyl and silk fibroin-gelatin bioinks. Biofabrication. 2023; 15(3).doi: 10.1088/1758-5090/acc68f

[139]

Flégeau K, Puiggali-Jou A, Zenobi-Wong M. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication. 2022; 14(3).doi: 10.1088/1758-5090/ac6b58

[140]

Gorroñogoitia I, Urtaza U, Zubiarrain-Laserna A, Alonso-Varona A, Zaldua AM. A study of the printability of alginate-based bioinks by 3D bioprinting for articular cartilage tissue engineering. Polymers (Basel). 2022; 14(2):354.doi: 10.3390/polym14020354

[141]

Zhao J, Qiu P, Wang Y, et al. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol. 2023;244:125250.doi: 10.1016/j.ijbiomac.2023.125250

[142]

Kim BS, Das S, Jang J, Cho DW. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev. 2020; 120(19):10608-10661.doi: 10.1021/acs.chemrev.9b00808

[143]

Simińska-Stanny J, Nicolas L, Chafai A, et al. Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing. Bioact Mater. 2024; 36:168-184.doi: 10.1016/j.bioactmat.2024.02.019

[144]

Alizadeh Sardroud H, Chen X, Eames BF. Reinforcement of hydrogels with a 3D-printed polycaprolactone (PCL) structure enhances cell numbers and cartilage ECM production under compression. J Funct Biomater. 2023; 14(6):313.doi: 10.3390/jfb14060313

[145]

Brézulier D, Chaigneau L, Jeanne S, Lebullenger R. The challenge of 3D bioprinting of composite natural polymers PLA/bioglass: trends and benefits in cleft palate surgery. Biomedicines. 2021; 9(11):1553.doi: 10.3390/biomedicines9111553

[146]

Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-immunomodulatory potential of nanoenabled 4D bioprinted microtissue for cartilage tissue engineering. Adv Healthc Mater. 2025; 14(5):e2400496.doi: 10.1002/adhm.202400496

[147]

Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT. Thermally-controlled extrusion-based bioprinting of collagen. J Mater Sci Mater Med. 2019; 30(5):55.doi: 10.1007/s10856-019-6258-2

[148]

Kim SA, Lee Y, Park K, et al. 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers. Int J Bioprint. 2023; 9(5):765.doi: 10.18063/ijb.765

[149]

Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477-486.

[150]

Bullough PG, Jagannath A. The morphology of the calcification front in articular cartilage. Its significance in joint function. J Bone Joint Surg Br Vol. 1983; 65(1):72-78.doi: 10.1302/0301-620x.65b1.6337169

[151]

Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017; 57:1-25.doi: 10.1016/j.actbio.2017.01.036

[152]

Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med. 2017; 36(3):413-425.doi: 10.1016/j.csm.2017.02.001

[153]

Duarte Campos DF, Drescher W, Rath B, Tingart M, Fischer H. Supporting biomaterials for articular cartilage repair. Cartilage. 2012; 3(3):205-221.doi: 10.1177/1947603512444722

[154]

Liao IC, Moutos FT, Estes BT, Zhao X, Guilak F. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv Funct Mater. 2013; 23(47):5833-5839.doi: 10.1002/adfm.201300483

[155]

Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials. 2012; 33(11):3143-3152.doi: 10.1016/j.biomaterials.2011.12.050

[156]

Krüger R, Groll J. Fiber reinforced calcium phosphate cements—on the way to degradable load bearing bone substitutes? Biomaterials. 2012; 33(25):5887-5900.doi: 10.1016/j.biomaterials.2012.04.053

[157]

Schipani R, Scheurer S, Florentin R, Critchley SE, Kelly DJ. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication. 2020; 12(3):035011.doi: 10.1088/1758-5090/ab8708

[158]

Boere KW, Visser J, Seyednejad H, et al. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomater. 2014; 10(6):2602-2611.doi: 10.1016/j.actbio.2014.02.041

[159]

Sivashankari PR, Prabaharan M. Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. Int J Biol Macromol. 2020; 146:222-231.doi: 10.1016/j.ijbiomac.2019.12.219

[160]

Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, et al. Hydroxyapatite as a biomaterial—a gift that keeps on giving. Drug Dev Ind Pharm. 2020; 46(7):1035-1062.doi: 10.1080/03639045.2020.1776321

[161]

Huang J, Huang Z, Liang Y, et al. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair. Biomater Sci. 2021; 9(7):2620-2630.doi: 10.1039/d0bm02103b

[162]

Cui X, Breitenkamp K, Lotz M, D’Lima D. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng. 2012; 109(9):2357-2368.doi: 10.1002/bit.24488

[163]

Hauptstein J, Forster L, Nadernezhad A, Groll J, Teßmar J, Blunk T. Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues. Int J Mol Sci. 2022; 23(2):924.doi: 10.3390/ijms23020924

[164]

Shi W, Fang F, Kong Y, et al. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Biofabrication. 2021; 14(1).doi: 10.1088/1758-5090/ac42de

[165]

Mouser VHM, Levato R, Bonassar LJ, et al. Three-dimensional bioprinting and its potential in the field of articular cartilage regeneration. Cartilage. 2017; 8(4):327-340.doi: 10.1177/1947603516665445

[166]

Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012; 18(11-12): 1304-1312.doi: 10.1089/ten.TEA.2011.0543

[167]

Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl Mater Interfaces. 2020; 12(4):4343-4357.doi: 10.1021/acsami.9b22062

[168]

Ni T, Liu M, Zhang Y, Cao Y, Pei R. 3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair. Bioconjug Chem. 2020; 31(8):1938-1947.doi: 10.1021/acs.bioconjchem.0c00298

[169]

Nedunchezian S, Banerjee P, Lee CY, et al. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Mater Sci Eng C Mater Biol Appl. 2021;124:112072.doi: 10.1016/j.msec.2021.112072

[170]

Levato R, Webb WR, Otto IA, et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater. 2017; 61:41-53.doi: 10.1016/j.actbio.2017.08.005

[171]

Xu Y, Peng J, Richards G, Lu S, Eglin D. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. J Orthop Translat. 2019; 18:128-141.doi: 10.1016/j.jot.2019.05.003

[172]

Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep. 2017; 7(1):5837.doi: 10.1038/s41598-017-05699-x

[173]

Tamaddon M, Wang L, Liu Z, Liu C. Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering. Biodes Manuf. 2018; 1(2):101-114.doi: 10.1007/s42242-018-0015-0

[174]

Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromolecules. 2017; 18(1):1-26.doi: 10.1021/acs.biomac.6b01619

[175]

Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 2020; 113:130-143.doi: 10.1016/j.actbio.2020.05.040

[176]

Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. Am J Sports Med. 2020; 48(11):2808-2818.doi: 10.1177/0363546520941842

[177]

Chen Y, Chen Y, Xiong X, et al. Hybridizing gellan/alginate and thixotropic magnesium phosphate-based hydrogel scaffolds for enhanced osteochondral repair. Mater Today Bio. 2022;14:100261.doi: 10.1016/j.mtbio.2022.100261

[178]

Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D bioprinting of osteochondral tissue substitutes—in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep. 2020; 10(1):8277.doi: 10.1038/s41598-020-65050-9

[179]

Nowicki MA, Castro NJ, Plesniak MW, Zhang LG. 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology. 2016; 27(41):414001.doi: 10.1088/0957-4484/27/41/414001

[180]

Du Y, Liu H, Yang Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials. 2017; 137:37-48.doi: 10.1016/j.biomaterials.2017.05.021

[181]

Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015; 1(9):e1500758.doi: 10.1126/sciadv.1500758

[182]

Jalandhra GK, Molley TG, Hung TT, Roohani I, Kilian KA. In situ formation of osteochondral interfaces through “bone-ink” printing in tailored microgel suspensions. Acta Biomater. 2023; 156:75-87.doi: 10.1016/j.actbio.2022.08.052

[183]

Muir H. The chondrocyte, architect of cartilage— biomechanics, structure, function and molecular-biology of cartilage matrix macromolecules. Review. Bioessays. 1995; 17(12):1039-1048.doi: 10.1002/bies.950171208

[184]

Hutchinson ID, Moran CJ, Potter HG, Warren RF, Rodeo SA. Restoration of the meniscus form and function. Article. Am J Sports Med. 2014; 42(4):987-998.doi: 10.1177/0363546513498503

[185]

Katz JN, Brophy RH, Chaisson CE, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. Article. New Engl J Med. 2013; 368(18):1675-1684.doi: 10.1056/NEJMoa1301408

[186]

Perera K, Ivone R, Natekin E, Wilga CA, Shen J, Menon JU. 3D bioprinted implants for cartilage repair in intervertebral discs and knee menisci. Front Bioeng Biotechnol. 2021;9:754113.doi: 10.3389/fbioe.2021.754113

[187]

Toh WS, Foldager CB, Pei M, Hui JHP. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Article. Stem Cell Rev Rep. 2014; 10(5):686-696.doi: 10.1007/s12015-014-9526-z

[188]

Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL. Tissue engineering and regenerative medicine strategies in meniscus lesions. Review. Arthroscopy. 2011; 27(12):1706-1719.doi: 10.1016/j.arthro.2011.08.283

[189]

Zhang Y, Li P, Wang H, Wang Y, Song K, Liu T. Research progress on reconstruction of meniscus in tissue engineering. Article. J Sports Med Phys Fitness. 2017; 57(5):595-603.doi: 10.23736/s0022-4707.16.06378-7

[190]

Stocco E, Porzionato A, De Rose E, Barbon S, De Caro R, Macchi V. Meniscus regeneration by 3D printing technologies: current advances and future perspectives. Review. J Tissue Eng. 2022;13:20417314211065860.doi: 10.1177/20417314211065860

[191]

Bahcecioglu G, Bilgen B, Hasirci N, Hasirci V. Anatomical meniscus construct with zone specific biochemical composition and structural organization. Article. Biomaterials. 2019;218:119361.doi: 10.1016/j.biomaterials.2019.119361

[192]

van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Review. Biomater Res. 2017;21:22-22.doi: 10.1186/s40824-017-0106-6

[193]

De Pieri A, Byerley AM, Musumeci CR, Salemizadehparizi F, Vanderhorst MA, Wuertz-Kozak K. Electrospinning and 3D bioprinting for intervertebral disc tissue engineering. Review. JOR Spine. 2020; 3(4)e1117.doi: 10.1002/jsp2.1117

[194]

Frost BA, Camarero-Espinosa S, Foster EJ. Materials for the spine: anatomy, problems, and solutions. Review. Materials. 2019; 12(2):253.doi: 10.3390/ma12020253

[195]

Hu D, Wu D, Huang L, et al. 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Article. Mater Lett 2018;223:219-222.doi: 10.1016/j.matlet.2018.03.204

[196]

Chen Q, Chen H, Zhu L, Zheng J. Fundamentals of double network hydrogels. Review. J Mater Chem B. 2015; 3(18):3654-3676.doi: 10.1039/c5tb00123d

[197]

Moxon SR, McMurran Z, Kibble MJ, Domingos M, Gough JE, Richardson SM. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Biofabrication. 2024; 17(1).doi: 10.1088/1758-5090/ad8379

[198]

Sun B, Lian M, Han Y, et al. A 3D-bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus reconstruction. Bioact Mater. 2021; 6(1):179-190.doi: 10.1016/j.bioactmat.2020.06.022

[199]

Storck K, Staudenmaier R, Buchberger M, et al. Total reconstruction of the auricle: our experiences on indications and recent techniques. Review. Biomed Res Int. 2014;2014:373286.doi: 10.1155/2014/373286

[200]

Nayyer L, Patel KH, Esmaeili A, et al. Tissue engineering: revolution and challenge in auricular cartilagere construction. Article. Plast Reconstr Surg. 2012; 129(5):1123-1137.doi: 10.1097/PRS.0b013e31824a2c1c

[201]

Bhamare N, Tardalkar K, Parulekar P, Khadilkar A, Joshi M. 3D printing of human ear pinna using cartilage specific ink. Article. Biomed Mater. 2021; 16(5):055008.doi: 10.1088/1748-605X/ac15b0

[202]

Cao YL, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Article. Proceedings paper. Plast Reconstr Surg. 1997; 100(2):297-302.doi: 10.1097/00006534-199708000-00001

[203]

Di Gesu R, Acharya AP, Jacobs I, Gottardi R. 3D printing for tissue engineering in otolaryngology. Article. Connect Tissue Res. 2020; 61(2):117-136.doi: 10.1080/03008207.2019.1663837

[204]

Tollefson TT. Advances in the treatment of microtia. Review. Curr Opin Otolaryngol Head Neck Surg. 2006; 14(6):412-422.doi: 10.1097/MOO.0b013e328010633a

[205]

Mussi E, Furferi R, Volpe Y, Facchini F, McGreevy KS, Uccheddu F. Ear reconstruction simulation: from handcrafting to 3D printing. Review. Bioengineering-Basel. 2019; 6(1):14.doi: 10.3390/bioengineering6010014

[206]

Pham TB, Sah RL, Masuda K, Watson D. Human septal cartilage tissue engineering: current methodologies and future directions. Bioengineering (Basel, Switzerland). 2024; 11(11):1123.doi: 10.3390/bioengineering11111123

[207]

Watson D, Reuther MS. Tissue-engineered cartilage for facial plastic surgery. Curr Opin Otolaryngol Head Neck Surg. 2014; 22(4):300-306.doi: 10.1097/moo.0000000000000068

[208]

Bagher Z, Asgari N, Bozorgmehr P, Kamrava SK, Alizadeh R, Seifalian A. Will tissue-engineering strategies bring new hope for the reconstruction of nasal septal cartilage? Curr Stem Cell Res Ther. 2020; 15(2):144-154.doi: 10.2174/1574888x14666191212160757

[209]

Shokri A, Ramezani K, Jamalpour MR, et al. In vivo efficacy of 3D-printed elastin-gelatin-hyaluronic acid scaffolds for regeneration of nasal septal cartilage defects. J Biomed Mater Res Part B Appl Biomater. 2022; 110(3):614-624.doi: 10.1002/jbm.b.34940

[210]

Lan X, Liang Y, Erkut EJN, et al. Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering. FASEB J. 2021; 35(3):e21191.doi: 10.1096/fj.202002081R

[211]

Lan X, Liang Y, Vyhlidal M, et al. In vitro maturation and in vivo stability of bioprinted human nasal cartilage. J Tissue Eng. 2022;13:20417314221086368.doi: 10.1177/20417314221086368

[212]

Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol. 2018; 233(3):1913-1928.doi: 10.1002/jcp.26018

[213]

Wan H, Xiang J, Mao G, Pan S, Li B, Lu Y. Recent advances in the application of 3D-printing bioinks based on decellularized extracellular matrix in tissue engineering. ACS Omega. 2024; 9(23):24219-24235.doi: 10.1021/acsomega.4c02847

[214]

Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv Healthc Mater. 2018; 7(11):e1701347.doi: 10.1002/adhm.201701347

[215]

Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater (Deerfield Beach, Fla). 2017; 29(3).doi: 10.1002/adma.201604630

[216]

Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater (Deerfield Beach, Fla). 2018; 30(27):e1800242.doi: 10.1002/adma.201800242

AI Summary AI Mindmap
PDF (1894KB)

525

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/