An experimental workflow for bioprinting optimization: Application to a custom-made biomaterial ink

Pablo Martín Compaired , Elena García-Gareta , María Ángeles Pérez

International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 397 -415.

PDF (4064KB)
International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 397 -415. DOI: 10.36922/IJB025120094
RESEARCH ARTICLE
research-article

An experimental workflow for bioprinting optimization: Application to a custom-made biomaterial ink

Author information +
History +
PDF (4064KB)

Abstract

Bioprinting is an emerging technology with significant potential in biomedical fields, enabling the creation of highly customized, cell-laden constructs. Despite the promise, achieving high-quality, reproducible prints remains challenging due to the lack of standardized protocols, which has hindered the widespread adoption of the technique. In this study, we present a systematic bioprinting protocol designed to optimize the performance of an in-house photo-curable biomaterial ink composed of gelatin methacryloyl and egg white protein. Printing quality was evaluated through the following three key assessments: extrusion, deposition, and printability. To facilitate accurate image analysis, we developed a custom three-dimensional (3D)- printed lens support specifically designed for a USB microscope. Additionally, we implemented a Python script to quantitatively assess bioprinting quality. Our results indicate that a pressure range of 70-80 kPa, combined with speeds between 300 and 900 mm/min, yields reliable extrusion flow, with 75 kPa and 600 mm/min emerging as optimal parameters for bioprinting 3D constructs. These findings underscore the importance of carefully tuning parameters—including pressure and speed—to achieve stable, high-resolution extrusions. Such optimization mitigates common printing issues, including tip clogging, filament dragging, and unintended merging of adjacent filaments, thereby enhancing structural accuracy. This work provides a comprehensive framework for evaluating and optimizing bioprinting parameters, offering a reproducible methodology to enhance print quality. It contributes to ongoing efforts to standardize bioprinting processes and advance their applications in tissue engineering and regenerative medicine.

Keywords

3D bioprinting protocol / Deposition / Egg white proteins / Extrusion / Gelatin methacryloyl / Photo-curable biomaterial ink / Printability

Cite this article

Download citation ▾
Pablo Martín Compaired, Elena García-Gareta, María Ángeles Pérez. An experimental workflow for bioprinting optimization: Application to a custom-made biomaterial ink. International Journal of Bioprinting, 2025, 11(3): 397-415 DOI:10.36922/IJB025120094

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work has been financially supported by the Spanish Ministry of Science and Innovation (grant no. PID2023-146072OB-I00). P.M.C was funded by the Spanish Government through “Plan de Recuperación, Transformación y Resiliencia” and by the European Union through “NextGenerationEU” (Programa Investigo 076-16). E.G.G was funded by the Ramón & Cajal Fellowship (RYC2021-033490-I, funded by MCIN/AE/10.13039/501100011033 and the EU “NextGenerationEU/PRTR”). The Bio X bioprinter was adquired through Contrato Programa Plan de Inversiones e Investigación from the Aragón Government (2022).

Conflict of interest

The authors declare they have no competing interests.

References

[1]

Halper J. Narrative review and guide: state of the art and emerging opportunities of bioprinting in tissue regeneration and medical instrumentation. Bioengineering. 2025; 12(1):71.doi: 10.3390/bioengineering12010071

[2]

Wilson WC, Boland T. Cell and organ printing 1: Protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003; 272(2):491-496.doi: 10.1002/ar.a.10057

[3]

Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536.doi: 10.1016/j.biomaterials.2019.119536

[4]

Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci. 2019; 6(11):1900344.doi: 10.1002/advs.201900344

[5]

Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics. 2021; 13(9):1373.doi: 10.3390/pharmaceutics13091373

[6]

Sousa AC, Alvites R, Lopes B, et al. Three-dimensional printing/bioprinting and cellular therapies for regenerative medicine: current advances. J Funct Biomater. 2025; 16(1):28.doi: 10.3390/jfb16010028

[7]

Zimmerling A, Chen X. Bioprinting for combating infectious diseases. Bioprinting. 2020;20:e00104.doi: 10.1016/j.bprint.2020.e00104

[8]

Kantaros A, Ganetsos T, Petrescu FIT, Alysandratou E. Bioprinting and intellectual property: challenges, opportunities, and the road ahead. Bioengineering. 2025; 12(1):76.doi: 10.3390/bioengineering12010076

[9]

Kinjoll Dey. 3D Bioprinting Market Size, Share & Trends Analysis Report by Technology (Magnetic Levitation, Inkjet-Based), By Application (Medical, Dental, Biosensors, Bioinks), By Region, And Segment Forecasts, 2023 - 2030; 2024. https://www.grandviewresearch.com/horizon/outlook/3d-bioprinting-

[10]

Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR. An overview on materials and techniques in 3D bioprinting toward biomedical application. Engin Regenerat. 2021; 2:1-18.doi: 10.1016/j.engreg.2020.12.001

[11]

Skardal A. Perspective: “Universal” bioink technology for advancing extrusion bioprinting-based biomanufacturing. Bioprinting. 2018;10:e00026.doi: 10.1016/j.bprint.2018.e00026

[12]

Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018; 6(5):915-946.doi: 10.1039/c7bm00765e

[13]

Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng. 2025;16: 20417314241308022.doi: 10.1177/20417314241308022

[14]

Vijayavenkataraman S. 3D bioprinting: challenges in commercialization and clinical translation . J 3D Print Med . 2023; 7(3).doi: 10.2217/3dp-2022-0026

[15]

Simon A, Grohens Y, Vandanjon L, Bourseau P, Balnois E, Levesque G. A comparative study of the rheological and structural properties of gelatin gels of mammalian and fish origins. In: Macromolecular Symposia, Vol. 203; 2003:331-338.doi: 10.1002/masy.200351337

[16]

Michelini L, Probo L, Farè S, Contessi Negrini N. Characterization of gelatin hydrogels derived from different animal sources. Mater Lett. 2020;272;127865.doi: 10.1016/j.matlet.2020.127865

[17]

Sompie M, Triatmojo S, Pertiwiningrum A, Pranoto Y. The effects of animal age and acetic acid concentration on pigskin gelatin characteristics. J Indones Trop Anim Agric. 2012; 37(3):176-182.doi: 10.14710/jitaa.37.3.176-182

[18]

Netter AB, Goudoulas TB, Germann N. Effects of Bloom number on phase transition of gelatin determined by means of rheological characterization. LWT. 2020;132:109813.doi: 10.1016/j.lwt.2020.109813

[19]

Gaglio CG, Baruffaldi D, Pirri CF, Napione L, Frascella F. GelMA synthesis and sources comparison for 3D multimaterial bioprinting. Front Bioeng Biotechnol. 2024;12:1383010.doi: 10.3389/fbioe.2024.1383010

[20]

Standard Guide for Bioinks Used in Bioprinting; 2024.doi: 10.1520/F3659-24

[21]

Standards Coordinating Body. Project: Specifications for Bioinks and Bioprinters. Accessed November 25, 2024. https://www.standardscoordinatingbody.org/project-specification-printability-bioink

[22]

Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev. 2020; 120(19):11028-11055.doi: 10.1021/acs.chemrev.0c00084

[23]

Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusionbased bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017; 9(4):044107.doi: 10.1088/1758-5090/aa8dd8

[24]

Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin- alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication. 2018; 10(3):034106.doi: 10.1088/1758-5090/aacdc7

[25]

Ribeiro A, Blokzijl MM, Levato R, et al. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication. 2018; 10(1):014102.doi: 10.1088/1758-5090/aa90e2

[26]

Therriault D, White SR, Lewis JA. Rheological behavior of fugitive organic inks for direct-write assembly. Appl Rheol. 2007; 17(1):10112-1-10112-8.doi: 10.1515/arh-2007-0001

[27]

Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016; 8(3):035020.doi: 10.1088/1758-5090/8/3/035020

[28]

Li Z, Ramos A, Li MC, et al. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Biomed Phys Eng Express. 2020; 6(4):045009.doi: 10.1088/2057-1976/ab8fc6

[29]

Rodríguez-Rego JM, Mendoza-Cerezo L, Macías-García A, Carrasco-Amador JP, Marcos-Romero AC. Methodology for characterizing the printability of hydrogels. Int J Bioprint. 2022; 9(2):280-291.doi: 10.18063/IJB.V9I2.667

[30]

Xu J, Yang S, Su Y, et al. A 3D bioprinted tumor model fabricated with gelatin/sodium alginate/decellularized extracellular matrix bioink. Int J Bioprint. 2023; 9(1):109-130.doi: 10.18063/ijb.v9i1.630

[31]

Esser TU, Anspach A, Muenzebrock KA, et al. Direct 3D-bioprinting of hiPSC-derived cardiomyocytes to generate functional cardiac tissues. Adv Mater. 2023; 35(52): e2305911.doi: 10.1002/adma.202305911

[32]

Perin F, Spessot E, Famà A, et al. Modeling a dynamic printability window on polysaccharide blend inks for extrusion bioprinting. ACS Biomater Sci Eng. 2023; 9(3):1320-1331.doi: 10.1021/acsbiomaterials.2c01143

[33]

Bonatti AF, Chiesa I, Vozzi G, De Maria C. Open-source CAD-CAM simulator of the extrusion-based bioprinting process. Bioprinting. 2021;24:e00156.doi: 10.1016/j.bprint.2021.e00172

[34]

Galocha-León C, Antich C, Voltes-Martínez A, et al. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res. 2025; 15(1):291-311.doi: 10.1007/s13346-024-01596-9

[35]

O’Connell C, Ren J, Pope L, et al.Characterizing bioinks for extrusion bioprinting: printability and rheology.In: Methods in Molecular Biology. Vol. 2140. Humana Press Inc.; 2020:111-133.doi: 10.1007/978-1-0716-0520-2_7

[36]

Ruberu K, Senadeera M, Rana S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914.doi: 10.1016/j.apmt.2020.100914

[37]

Lai Y, Xiao X, Huang Z, et al. Photocrosslinkable biomaterials for 3D bioprinting: mechanisms, recent advances, and future prospects. Int J Mol Sci. 2024; 25(23):12567.doi: 10.3390/ijms252312567

[38]

Balaji KV, Bhutoria S, Nayak S, Anil Kumar P, Velayudhan S. Printability assessment of modified filament deposition modelling three dimensional bioprinter printer using polymeric formulations. Biomed Eng Adv. 2023;5:100083.doi: 10.1016/j.bea.2023.100083

[39]

Webb B, Doyle BJ. Parameter optimization for 3D bioprinting of hydrogels. Bioprinting. 2017; 8:8-12.doi: 10.1016/j.bprint.2017.09.001

[40]

Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015; 73:254-271.doi: 10.1016/j.biomaterials.2015.08.045

[41]

Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: a review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023; 28(3):142-151.doi: 10.1016/j.slast.2023.02.003

[42]

Razi SM, Fahim H, Amirabadi S, Rashidinejad A. An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll. 2023;135: 108183.doi: 10.1016/j.foodhyd.2022.108183

[43]

Jalili-Firoozinezhad S, Filippi M, Mohabatpour F, Letourneur D, Scherberich A. Chicken egg white: hatching of a new old biomaterial. Mater Today. 2020; 40:193-214.doi: 10.1016/j.mattod.2020.05.022

[44]

Mousseau Y, Mollard S, Qiu H, et al. In vitro 3D angiogenesis assay in egg white matrix: comparison to Matrigel, compatibility to various species, and suitability for drug testing. Lab Investig. 2014; 94(3):340-349.doi: 10.1038/labinvest.2013.150

[45]

Mahmoodi M, Darabi MA, Mohaghegh N, et al. Egg white photocrosslinkable hydrogels as versatile bioinks for advanced tissue engineering applications. Adv Funct Mater. 2024; 34(32):2315040.doi: 10.1002/adfm.202315040

[46]

Pele KG, Amaveda H, Mora M, et al. Hydrocolloids of egg white and gelatin as a platform for hydrogel-based tissue engineering. Gels. 2023; 9(6):505.doi: 10.3390/gels9060505

[47]

Van Der Plancken I, Van Loey A, Hendrickx ME. Effect of heat-treatment on the physico-chemical properties of egg white proteins: a kinetic study. J Food Eng. 2006; 75(3):316-326.doi: 10.1016/j.jfoodeng.2005.04.019

[48]

Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels. 2021; 7(4):255.doi: 10.3390/gels7040255

[49]

Irgens F. Rheology and Non-Newtonian Fluids. Springer International Publishing; 2014.doi: 10.1007/978-3-319-01053-3

[50]

Guo R, Tang W. Optimizing printhead design for enhanced temperature control in extrusion-based bioprinting. Micromachines (Basel). 2024; 15(8):943.doi: 10.3390/mi15080943

[51]

Shao MH, Cui B, Zheng TF, Wang CH. Ultrasonic manipulation of cells for alleviating the clogging of extrusionbased bioprinting nozzles. J Phys Conf Ser. 2021;1798:012009.doi: 10.1088/1742-6596/1798/1/012009

[52]

Xu H, Liu J, Zhang Z, Xu C. Cell sedimentation during 3D bioprinting: a mini review. Biodes Manuf. 2022; 5(3):617-626.doi: 10.1007/s42242-022-00183-6

[53]

Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability in extrusion bioprinting. Biofabrication. 2021; 13(3).doi: 10.1088/1758-5090/abe7ab

[54]

Ren Y, Liu Z, Shum HC. Breakup dynamics and dripping-to- jetting transition in a Newtonian/shear-thinning multiphase microsystem. Lab Chip. 2015; 15(1):121-134.doi: 10.1039/c4lc00798k

[55]

Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016; 8(4):045002.doi: 10.1088/1758-5090/8/4/045002

[56]

Hildebrand T, Rüegsegger P. A new method for the modelindependent assessment of thickness in three-dimensional images. J Microsc. 1997; 185(1):67-75.doi: 10.1046/j.1365-2818.1997.1340694.x

[57]

Dahl VA, Dahl AB.Fast local thickness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops; 2023:4335-4343.

[58]

Suzuki S. Topological structural analysis of digitized binary images by border following. Comp Vis Graphics Image Process 1985; 30(1):32-46.

[59]

Arjoca S, Bojin F, Neagu M, Păunescu A, Neagu A, Păunescu V. Hydrogel extrusion speed measurements for the optimization of bioprinting parameters. Gels. 2024; 10(2):103.doi: 10.3390/gels10020103

[60]

Rastin H, Zhang B, Bi J, Hassan K, Tung TT, Losic D. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. J Mater Chem B. 2020; 8(27):5862-5876.doi: 10.1039/d0tb00627k

[61]

Zhou K, Dey M, Ayan B, et al. Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink. Biomed Mater (Bristol). 2021; 16(4): 045005.doi: 10.1088/1748-605X/abe55e

[62]

Freeman FE, Kelly DJ. Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep. 2017; 7(1):17042.doi: 10.1038/s41598-017-17286-1

[63]

Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016; 116(3):1496-1539.doi: 10.1021/acs.chemrev.5b00303

[64]

Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater. 2025; 193:20-48.doi: 10.1016/j.actbio.2025.01.006

[65]

Wu CA, Zhu Y, Woo YJ. Advances in 3D bioprinting: techniques, applications, and future directions for cardiac tissue engineering. Bioengineering. 2023; 10(7):842.doi: 10.3390/bioengineering10070842

[66]

Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules. 2023; 28(6):2766.doi: 10.3390/molecules28062766

[67]

Reina-Romo E, Mandal S, Amorim P, Bloemen V, Ferraris E, Geris L. Towards the experimentally-informed in silico nozzle design optimization for extrusion-based bioprinting of shear-thinning hydrogels. Front Bioeng Biotechnol. 2021;9:701778.doi: 10.3389/fbioe.2021.701778

[68]

Oyinloye TM, Yoon WB. Application of computational fluid dynamics (CFD) in the deposition process and printability assessment of 3D printing using rice paste. Processes. 2022; 10(1):68.doi: 10.3390/pr10010068

[69]

Lucas L, Aravind A, Emma P, Christophe M, Edwin- Joffrey C. Rheology, simulation and data analysis toward bioprinting cell viability awareness. Bioprinting. 2021; 21.doi: 10.1016/j.bprint.2020.e00119

[70]

Landerneau S, Lemarié L, Marquette C, Petiot E. Green 3D bioprinting of plant cells: a new scope for 3D bioprinting. Bioprinting. 2022;27:e00216.doi: 10.1016/j.bprint.2022.e00216

[71]

Chua CK, An J, Fan S, et al. A perspective on transformative bioprinting. Int J Bioprint. 2024; 11(1):3525.doi: 10.36922/ijb.3525

[72]

Lai G, Meagher L. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Biofabrication. 2024; 16(3).doi: 10.1088/1758-5090/ad39a8

[73]

Ding H, Chang RC. Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath. Appl Sci. 2018; 8(3):403.doi: 10.3390/app8030403

AI Summary AI Mindmap
PDF (4064KB)

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/