Development, characterization, and in vitro evaluation of TEMPO-oxidized microcellulose-based biomaterial inks for three-dimensional bioprinting

Feiyang Wang , Catherine George , Lea Gobelin , Alina Violeta Ursu , Purnimajayasree Ramesh , Arunkumar Palaniappan , Cédric Delattre

International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 475 -497.

PDF (3539KB)
International Journal of Bioprinting ›› 2025, Vol. 11 ›› Issue (3) : 475 -497. DOI: 10.36922/IJB025090075
RESEARCH ARTICLE
research-article

Development, characterization, and in vitro evaluation of TEMPO-oxidized microcellulose-based biomaterial inks for three-dimensional bioprinting

Author information +
History +
PDF (3539KB)

Abstract

Three-dimensional (3D)-bioprinting is widely used in tissue engineering due to its customizability, avoidance of allogeneic rejection, and absence of disease transmission risk. Cellulose, a renewable natural polymer, is valued as an excellent bioink for its non-toxicity, biocompatibility, biodegradability, and cost-effectiveness. In this study, 2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized microcellulose was subjected to homogenization. The resulting bioink was characterized using Fourier transform infrared spectroscopy, conductivity measurements, and rheometric analyses. Scaffolds were subsequently fabricated using 3D bioprinting, and cell viability was evaluated through cell culture on the printed scaffold. Optimization of the oxidation process revealed that a 6-h treatment achieved the highest degree of oxidation, exhibiting superior viscosity and printability compared to other durations. A straightforward scale-up of the 6-h process enabled the successful fabrication of 3D-bioprinted scaffolds. Cell culture experiments demonstrated excellent cell adhesion and viability on the scaffolds. Our findings demonstrate that oxidized microcellulose serves as a promising bio-based, non-toxic, structurally stable, and cell-compatible bioink for 3D bioprinting in tissue engineering applications.

Keywords

Cellulose / Cell viability / Three-dimensional bioprinting / Tissue engineering

Cite this article

Download citation ▾
Feiyang Wang, Catherine George, Lea Gobelin, Alina Violeta Ursu, Purnimajayasree Ramesh, Arunkumar Palaniappan, Cédric Delattre. Development, characterization, and in vitro evaluation of TEMPO-oxidized microcellulose-based biomaterial inks for three-dimensional bioprinting. International Journal of Bioprinting, 2025, 11(3): 475-497 DOI:10.36922/IJB025090075

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This research was funded by the China Scholarship Council, grant number 202208330024.

Conflict of interest

Cedric Delattre serves as an Editorial Board Member of the journal but had no involvement, directly or indirectly, in the editorial or peer-review process for this manuscript. The other authors declare that they have no competing interests.

References

[1]

Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C. 2015; 57:414-433.doi: 10.1016/j.msec.2015.07.053

[2]

Antezana PE, Municoy S, Álvarez-Echazú MI, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics. 2022; 14(2):464.doi: 10.3390/pharmaceutics14020464

[3]

Wang J, Ma Y, Meng Q, et al. Photocrosslinked carboxymethylcellulose-based hydrogels: Synthesis, characterization for curcumin delivery and wound healing. Int J Biol Macromol. 2024;275:133558.doi: 10.1016/j.ijbiomac.2024.133558

[4]

Mehrabi A, Jalise SZ, Hivechi A, et al. Evaluation of inherent properties of the carboxymethyl cellulose (CMC) for potential application in tissue engineering focusing on bone regeneration. Polym Adv Technol. 2024; 35(1):e6258.doi: 10.1002/pat.6258

[5]

Machado B, Costa SM, Costa I, Fangueiro R, Ferreira DP. The potential of algae as a source of cellulose and its derivatives for biomedical applications. Cellulose. 2024; 31(6):3353-3376.doi: 10.1007/s10570-024-05816-w

[6]

Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine. 2015; 11(6):1551-1573.doi: 10.1016/j.nano.2015.03.002

[7]

Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromolecules. 2017; 18(1):1-26.doi: 10.1021/acs.biomac.6b01619

[8]

Bolívar-Monsalve EJ, Alvarez MM, Hosseini S, et al. Engineering bioactive synthetic polymers for biomedical applications: a review with emphasis on tissue engineering and controlled release. Mater Adv. 2021; 2(14):4447-4478.doi: 10.1039/D1MA00092F

[9]

Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - an emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater. 2024; 32:356-384.doi: 10.1016/j.bioactmat.2023.10.012

[10]

Budharaju H, Subramanian A, Sethuraman S. Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomater Sci. 2021; 9(6):1974-1994.doi: 10.1039/d0bm01428a

[11]

Zennifer A, Senthilvelan P, Sethuraman S, Sundaramurthi D. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydr Polym. 2021;256:117561.doi: 10.1016/j.carbpol.2020.117561

[12]

Zaman A, Huang F, Jiang M, Wei W, Zhou Z. Preparation, properties, and applications of natural cellulosic aerogels: a review. Energy Built Environ. 2020; 1(1):60-76.doi: 10.1016/j.enbenv.2019.09.002

[13]

Seddiqi H, Oliaei E, Honarkar H, et al. Cellulose and its derivatives: towards biomedical applications. Cellulose. 2021; 28:1893-1931.doi: 10.1007/s10570-020-03674-w

[14]

Wang Y, Qian J, Zhao N, Liu T, Xu W, Suo A. Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydr Polym. 2017; 167:44-51.doi: 10.1016/j.carbpol.2017.03.030

[15]

Flávia Dias M-M, Cristina Duarte V-S. Cellulose and its derivatives use in the pharmaceutical compounding practice.In: Theo van de V, Louis G, eds. Cellulose. IntechOpen; 2013:Ch. 8.doi: 10.5772/56637

[16]

Wahid F, Huang L-H, Zhao X-Q, et al. Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv. 2021;53:107856.doi: 10.1016/j.biotechadv.2021.107856

[17]

Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications. Polymer Degrad Stabil. 2020;179: 109232.doi: 10.1016/j.polymdegradstab.2020.109232

[18]

Lahiri D, Nag M, Dutta B, et al. Bacterial cellulose: production, characterization, and application as antimicrobial agent. Int J Mol Sci. 2021; 22(23):12984.doi: 10.3390/ijms222312984

[19]

Oprea M, Voicu SI. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr Polym. 2020;247:116683.doi: 10.1016/j.carbpol.2020.116683

[20]

Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng. 2019;13:55.doi: 10.1186/s13036-019-0177-0

[21]

Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G. Nanocellulose: extraction and application. Carbon Resour Convers. 2018; 1(1):32-43.doi: 10.1016/j.crcon.2018.05.004

[22]

Isogai T, Yanagisawa M, Isogai A. Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose. 2009; 16(1):117-127.doi: 10.1007/s10570-008-9245-1

[23]

Masruchin N, Park B-D, Causin V, Um IC. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose. 2015; 22(3):1993-2010.doi: 10.1007/s10570-015-0624-0

[24]

Rashad A, Mustafa K, Heggset EB, Syverud K. Cytocompatibility of wood-derived cellulose nanofibril hydrogels with different surface chemistry. Biomacromolecules. 2017; 18(4):1238-1248.doi: 10.1021/acs.biomac.6b01911

[25]

Aarstad O, Heggset EB, Pedersen IS, Bjørnøy SH, Syverud K, Strand BL. Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils. Polymers (Basel). 2017; 9(8):378.doi: 10.3390/polym9080378

[26]

da Silva Perez D, Montanari S, Vignon MR. TEMPO-mediated oxidation of cellulose III. Biomacromolecules. 2003; 4(5):1417-1425.doi: 10.1021/bm034144s

[27]

Miao X, Lin J, Tian F, Li X, Bian F, Wang J. Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohydr Polym. 2016; 136:841-850.doi: 10.1016/j.carbpol.2015.09.056

[28]

Daioglou V, Stehfest E, Wicke B, Faaij A, van Vuuren DP. Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy. 2016; 8(2):456-470.doi: 10.1111/gcbb.12285

[29]

Qasim U, Ali Z, Nazir MS, et al. Isolation of cellulose from wheat straw using alkaline hydrogen peroxide and acidified sodium chlorite treatments: comparison of yield and properties. Adv Polym Technol. 2020;2020:9765950.doi: 10.1155/2020/9765950

[30]

Wang F, Borjas A, Bonto A, et al. Exploring novel applications for hydrogels derived from modified celluloses. Polymers. 2024; 16(4):530.doi: 10.3390/polym16040530

[31]

Tahiri C, Vignon MR. TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose. 2000; 7(2):177-188.doi: 10.1023/A:1009276009711

[32]

Lasseuguette E. Grafting onto microfibrils of native cellulose. Cellulose. 2008; 15(4):571-580.doi: 10.1007/s10570-008-9200-1

[33]

Udoetok IA, Wilson LD, Headley JV. Ultra-sonication assisted cross-linking of cellulose polymers. Ultrasonic Sonochem. 2018; 42:567-576.doi: 10.1016/j.ultsonch.2017.12.017

[34]

Xu J, Kenar JA. Rheological and micro-rheological properties of chicory inulin gels. Gels. 2024; 10(3):171.doi: 10.3390/gels10030171

[35]

Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels. 2021; 7(4):255.doi: 10.3390/gels7040255

[36]

Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020; 120(19):11028-11055.doi: 10.1021/acs.chemrev.0c00084

[37]

Yadav C, Saini A, Maji PK. Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym. 2017; 165:276-284.doi: 10.1016/j.carbpol.2017.02.049

[38]

Rhim J-W, Reddy JP, Luo X. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose. 2015; 22(1):407-420.doi: 10.1007/s10570-014-0517-7

[39]

Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues - wheat straw and soy hulls. Bioresour Technol. 2008; 99(6):1664-1671.doi: 10.1016/j.biortech.2007.04.029

[40]

Ahmadzadeh S, Desobry S, Keramat J, Nasirpour A. Crystalline structure and morphological properties of porous cellulose/clay composites: the effect of water and ethanol as coagulants. Carbohydr Polym. 2016; 141:211-219.doi: 10.1016/j.carbpol.2016.01.017

[41]

Rosa SML, Rehman N, Nachtigall SMB, Bica CID. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym. 2012; 87(2):1131-1138.doi: 10.1016/j.carbpol.2011.08.084

[42]

Jiang F, Han S, Hsieh Y-L. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Adv. 2013; 3:12366-12375.doi: 10.1039/C3RA41646A

[43]

Jyoti BVS, Baek SW. Rheological characterization of ethanolamine gel propellants. J Energetic Mater. 2016; 34(3):260-278.doi: 10.1080/07370652.2015.1061617

[44]

Wan X, Luo L, Liu Y, Leng J. Direct Ink witing based 4D printing of materials and their applications. Adv Sci. 2020; 7(16):2001000.doi: 10.1002/advs.202001000

[45]

Guidetti M, Zampini MA, Jiang Y, et al. Axially- and torsionally-polarized radially converging shear wave MRE in an anisotropic phantom made via embedded direct ink writing. J Mech Behav Biomed Mater. 2021;119:104483.doi: 10.1016/j.jmbbm.2021.104483

[46]

Ma J, Lin Y, Chen X, Zhao B, Zhang J. Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloids. 2014; 38:119-128.doi: 10.1016/j.foodhyd.2013.11.016

[47]

Benaoun F, Delattre C, Boual Z, et al. Structural characterization and rheological behavior of a heteroxylan extracted from Plantago notata Lagasca (Plantaginaceae) seeds. Carbohydr Polym. 2017; 175:96-104.doi: 10.1016/j.carbpol.2017.07.056

[48]

Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatinalginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication. 2018; 10(3):034106.doi: 10.1088/1758-5090/aacdc7

[49]

Pugliese R, Beltrami B, Regondi S, Lunetta C. Polymeric biomaterials for 3D printing in medicine: an overview. Ann 3D Print Med. 2021;2:100011.doi: 10.1016/j.stlm.2021.100011

[50]

Hernández-Sosa A, Ramírez-Jiménez RA, Rojo L, et al. Optimization of the rheological properties of self-assembled tripeptide/alginate/cellulose hydrogels for 3D printing. Polymers. 2022; 14(11):2229.doi: 10.3390/polym14112229

[51]

Heggset EB, Strand BL, Sundby KW, Simon S, Chinga-Carrasco G, Syverud K. Viscoelastic properties of nanocellulose based inks for 3D printing and mechanical properties of CNF/alginate biocomposite gels. Cellulose. 2019; 26(1):581-595.doi: 10.1007/s10570-018-2142-3

[52]

Abouzeid RE, Khiari R, Beneventi D, Dufresne A. Biomimetic mineralization of three-dimensional printed Alginate/ Tempo-oxidized cellulose nanofibril scaffolds for bone tissue engineering. Biomacromolecules. 2018; 19(11):4442-4452.doi: 10.1021/acs.biomac.8b01325

[53]

Fermani M, Platania V, Kavasi R-M, et al. 3D-printed scaffolds from alginate/methyl cellulose/trimethyl chitosan/ silicate glasses for bone tissue engineering. Appl Sci. 2021; 11(18):8677.doi: 10.3390/app11188677

[54]

Teixeira Polez R, Huynh N, Pridgeon CS, Valle-Delgado JJ, Harjumäki R, Österberg M. Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques. Materials Today Bio. 2024;26:101065.doi: 10.1016/j.mtbio.2024.101065

[55]

Kim HJ, Castañeda R, Kang TH, Kimura S, Wada M, Kim U-J. Cellulose hydrogel film for spheroid formation of human adipose-derived stemcells. Cellulose. 2018; 25(4): 2589-2598.doi: 10.1007/s10570-018-1732-4

[56]

Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2023; 20:137-163.doi: 10.1016/j.bioactmat.2022.05.018

[57]

Torgbo S, Sukyai P. Bio-scaffold for bone tissue engineering with focus on bacterial cellulose, biological materials for hydroxyapatite synthesis and growth factors. Eur Polymer J. 2023;194:112168.doi: 10.1016/j.eurpolymj.2023.112168

[58]

Badekila AK, Pai V, Vijayan V, Kini S. Engineering alginate/ carboxymethylcellulose scaffolds to establish liver cancer spheroids: evaluation of molecular variances between 2D and 3D models. Int J Biol Macromol. 2024;254:128058.doi: 10.1016/j.ijbiomac.2023.128058

[59]

Kumar A, I Matari IA, Han SS. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Biofabrication. 2020; 12(2):025029.doi: 10.1088/1758-5090/ab736e

[60]

Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012; 109(7):1855-1863.doi: 10.1002/bit.24455

[61]

Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016; 2(10):1800-1805.doi: 10.1021/acsbiomaterials.6b00288

[62]

Włodarczyk-Biegun MK, Del Campo A. 3D bioprinting of structural proteins. Biomaterials. 2017; 134:180-201.doi: 10.1016/j.biomaterials.2017.04.019

[63]

Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22:11.doi: 10.1186/s40824-018-0122-1

[64]

Caliari SR, Ramirez MA, Harley BAC. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Biomaterials. 2011; 32(34):8990-8998.doi: 10.1016/j.biomaterials.2011.08.035

[65]

Chan WW, Yeo DCL, Tan V, Singh S, Choudhury D, Naing MW. Additive biomanufacturing with collagen inks. Bioengineering (Basel). 2020; 7(3):66.doi: 10.3390/bioengineering7030066

[66]

Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016; 34(3):312-319.doi: 10.1038/nbt.3413

[67]

Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cellladen tissue constructs. Adv Mater. 2014; 26(19):3124-3130.doi: 10.1002/adma.201305506

[68]

Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014; 35(1):49-62.doi: 10.1016/j.biomaterials.2013.09.078

[69]

Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015; 1(9):e1500758.doi: 10.1126/sciadv.1500758

[70]

Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications. Materials (Basel). 2016; 9(10):797.doi: 10.3390/ma9100797

[71]

Zhu K, Shin SR, van Kempen T, et al. Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater. 2017; 27(12):1605352.doi: 10.1002/adfm.201605352

[72]

Wang X, Ao Q, Tian X, et al. Gelatin-based hydrogels for organ 3D bioprinting. Polymers (Basel). 2017; 9(9):401.doi: 10.3390/polym9090401

[73]

Guizzardi R, Vaghi L, Marelli M, et al. Gelatin-based hydrogels through homobifunctional triazolinediones targeting tyrosine residues. Molecules. 2019; 24(3):589.doi: 10.3390/molecules24030589

[74]

Jiang T, Munguia-Lopez JG, Flores-Torres S, et al. Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate/gelatin hydrogels. Sci Rep. 2017; 7(1):4575.doi: 10.1038/s41598-017-04691-9

[75]

Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M. Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng. 2017; 45(1):210-223.doi: 10.1007/s10439-016-1704-5

[76]

Abasalizadeh F, Moghaddam SV, Alizadeh E, et al. Alginatebased hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 2020;14:8.doi: 10.1186/s13036-020-0227-7

[77]

Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: from food industry to biomedical applications and management of metabolic disorders. Polymers. 2020; 12(10):2417.doi: 10.3390/polym12102417

[78]

Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng. 2016; 2(10):1743-1751.doi: 10.1021/acsbiomaterials.6b00158

[79]

Poldervaart MT, Goversen B, de Ruijter M, et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One. 2017; 12(6):e0177628.doi: 10.1371/journal.pone.0177628

[80]

Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Hyaluronic acid hydrogels crosslinked in physiological conditions: synthesis and biomedical applications. Biomedicines. 2021; 9(9): 1113.doi: 10.3390/biomedicines9091113

[81]

Trombino S, Servidio C, Curcio F, Cassano R. Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics. 2019; 11(8):407.doi: 10.3390/pharmaceutics11080407

[82]

Gu Q, Tomaskovic-Crook E, Lozano R, et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater. 2016; 5(12):1429-1438.doi: 10.1002/adhm.201600095

[83]

Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013; 49(4):780-792.doi: 10.1016/j.eurpolymj.2012.12.009

[84]

Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: a review. J Mater Res Technol. 2021; 10:935-952.doi: 10.1016/j.jmrt.2020.12.012

[85]

Sezer S, Şahin İ, Öztürk K, Şanko V, Koçer Z, Sezer ÜA. Cellulose-based hydrogels as biomaterials. In: Mondal MIH, ed. Cellulose-Based Superabsorbent Hydrogels. Springer International Publishing; 2019:1177-1203.doi: 10.1007/978-3-319-77830-3_40

[86]

Bakarich S, Gorkin R, Naficy S, Gately R, in het Panhuis M, Spinks G, 3D/4D printing hydrogel composites: a pathway to functional devices. MRS Adv. 2016; 1:521-526.doi: 10.1557/adv.2015.9

[87]

Thakur A, Jaiswal MK, Peak CW, et al. Injectable shearthinning nanoengineered hydrogels for stem cell delivery. Nanoscale. 2016; 8(24):12362-12372.doi: 10.1039/c6nr02299e

[88]

Mokhtari H, Tavakoli S, Safarpour F, et al. Recent advances in chemically-modified and hybrid Carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers (Basel). 2021; 13(11):1744.doi: 10.3390/polym13111744

[89]

Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, Kaplan DL. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials. 2017; 117:105-115.doi: 10.1016/j.biomaterials.2016.11.046

[90]

Sommer MR, Schaffner M, Carnelli D, Studart AR. 3D printing of hierarchical silk fibroin structures. ACS Appl Mater Interfaces. 2016; 8(50):34677-34685.doi: 10.1021/acsami.6b11440

[91]

Suntivich R, Drachuk I, Calabrese R, Kaplan DL, Tsukruk VV. Inkjet printing of silk nest arrays for cell hosting. Biomacromolecules. 2014; 15(4):1428-1435.doi: 10.1021/bm500027c

[92]

Ciolacu DE, Suflet DM. 11 - cellulose-based hydrogels for medical/pharmaceutical applications.In: Popa V, Volf I, eds. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. Elsevier; 2018:401-439.doi: 10.1016/B978-0-444-63774-1.00011-9

[93]

Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photocrosslinking. Acta Biomater. 2016; 33:88-95.doi: 10.1016/j.actbio.2016.01.013

[94]

Xavier JR, Thakur T, Desai P, et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano. 2015; 9(3):3109-31018.doi: 10.1021/nn507488s

[95]

Jang J, Park H-J, Kim S-W, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017; 112:264-274.doi: 10.1016/j.biomaterials.2016.10.026

AI Summary AI Mindmap
PDF (3539KB)

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/